Suppr超能文献

机器学习鉴定癌症中的稳健基质标志物和调控机制。

Machine Learning Identifies Robust Matrisome Markers and Regulatory Mechanisms in Cancer.

机构信息

Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland.

Faculty of Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland.

出版信息

Int J Mol Sci. 2020 Nov 22;21(22):8837. doi: 10.3390/ijms21228837.

Abstract

The expression and regulation of matrisome genes-the ensemble of extracellular matrix, ECM, ECM-associated proteins and regulators as well as cytokines, chemokines and growth factors-is of paramount importance for many biological processes and signals within the tumor microenvironment. The availability of large and diverse multi-omics data enables mapping and understanding of the regulatory circuitry governing the tumor matrisome to an unprecedented level, though such a volume of information requires robust approaches to data analysis and integration. In this study, we show that combining Pan-Cancer expression data from The Cancer Genome Atlas (TCGA) with genomics, epigenomics and microenvironmental features from TCGA and other sources enables the identification of "landmark" matrisome genes and machine learning-based reconstruction of their regulatory networks in 74 clinical and molecular subtypes of human cancers and approx. 6700 patients. These results, enriched for prognostic genes and cross-validated markers at the protein level, unravel the role of genetic and epigenetic programs in governing the tumor matrisome and allow the prioritization of tumor-specific matrisome genes (and their regulators) for the development of novel therapeutic approaches.

摘要

基质细胞基因的表达和调控——细胞外基质 (ECM)、ECM 相关蛋白和调节剂以及细胞因子、趋化因子和生长因子的集合——对于肿瘤微环境中的许多生物学过程和信号都至关重要。大量多样化的多组学数据的可用性使得能够以前所未有的水平对调控肿瘤基质细胞的调控回路进行映射和理解,尽管如此大量的信息需要强大的数据分析和整合方法。在这项研究中,我们表明,将来自癌症基因组图谱 (TCGA) 的泛癌表达数据与来自 TCGA 和其他来源的基因组学、表观基因组学和微环境特征相结合,能够鉴定“标志性”基质细胞基因,并基于机器学习重建它们在 74 种人类癌症的临床和分子亚型以及约 6700 名患者中的调控网络。这些结果富含预后基因和蛋白质水平的交叉验证标志物,揭示了遗传和表观遗传程序在调控肿瘤基质细胞中的作用,并允许对肿瘤特异性基质细胞基因(及其调节剂)进行优先级排序,以开发新的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef9/7700160/25f74a7ef3f5/ijms-21-08837-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验