Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland.
Faculty of Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland.
Int J Mol Sci. 2020 Nov 22;21(22):8837. doi: 10.3390/ijms21228837.
The expression and regulation of matrisome genes-the ensemble of extracellular matrix, ECM, ECM-associated proteins and regulators as well as cytokines, chemokines and growth factors-is of paramount importance for many biological processes and signals within the tumor microenvironment. The availability of large and diverse multi-omics data enables mapping and understanding of the regulatory circuitry governing the tumor matrisome to an unprecedented level, though such a volume of information requires robust approaches to data analysis and integration. In this study, we show that combining Pan-Cancer expression data from The Cancer Genome Atlas (TCGA) with genomics, epigenomics and microenvironmental features from TCGA and other sources enables the identification of "landmark" matrisome genes and machine learning-based reconstruction of their regulatory networks in 74 clinical and molecular subtypes of human cancers and approx. 6700 patients. These results, enriched for prognostic genes and cross-validated markers at the protein level, unravel the role of genetic and epigenetic programs in governing the tumor matrisome and allow the prioritization of tumor-specific matrisome genes (and their regulators) for the development of novel therapeutic approaches.
基质细胞基因的表达和调控——细胞外基质 (ECM)、ECM 相关蛋白和调节剂以及细胞因子、趋化因子和生长因子的集合——对于肿瘤微环境中的许多生物学过程和信号都至关重要。大量多样化的多组学数据的可用性使得能够以前所未有的水平对调控肿瘤基质细胞的调控回路进行映射和理解,尽管如此大量的信息需要强大的数据分析和整合方法。在这项研究中,我们表明,将来自癌症基因组图谱 (TCGA) 的泛癌表达数据与来自 TCGA 和其他来源的基因组学、表观基因组学和微环境特征相结合,能够鉴定“标志性”基质细胞基因,并基于机器学习重建它们在 74 种人类癌症的临床和分子亚型以及约 6700 名患者中的调控网络。这些结果富含预后基因和蛋白质水平的交叉验证标志物,揭示了遗传和表观遗传程序在调控肿瘤基质细胞中的作用,并允许对肿瘤特异性基质细胞基因(及其调节剂)进行优先级排序,以开发新的治疗方法。