Suppr超能文献

用于步态数据分析的四元数熵

Quaternion Entropy for Analysis of Gait Data.

作者信息

Szczęsna Agnieszka

机构信息

Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.

出版信息

Entropy (Basel). 2019 Jan 17;21(1):79. doi: 10.3390/e21010079.

Abstract

Nonlinear dynamical analysis is a powerful approach to understanding biological systems. One of the most used metrics of system complexities is the Kolmogorov entropy. Long input signals without noise are required for the calculation, which are very hard to obtain in real situations. Techniques allowing the estimation of entropy directly from time signals are statistics like approximate and sample entropy. Based on that, the new measurement for quaternion signal is introduced. This work presents an example of application of a nonlinear time series analysis by using the new quaternion, approximate entropy to analyse human gait kinematic data. The quaternion entropy was applied to analyse the quaternion signal which represents the segments orientations in time during the human gait. The research was aimed at the assessment of the influence of both walking speed and ground slope on the gait control during treadmill walking. Gait data was obtained by the optical motion capture system.

摘要

非线性动力学分析是理解生物系统的一种强大方法。系统复杂性最常用的度量指标之一是柯尔莫哥洛夫熵。计算需要无噪声的长输入信号,而在实际情况中很难获得。允许直接从时间信号估计熵的技术是诸如近似熵和样本熵之类的统计量。基于此,引入了四元数信号的新度量。这项工作通过使用新的四元数近似熵来分析人类步态运动学数据,给出了一个非线性时间序列分析应用的示例。四元数熵被用于分析表示人类步态过程中各节段随时间的方向的四元数信号。该研究旨在评估步行速度和地面坡度对跑步机行走过程中步态控制的影响。步态数据通过光学运动捕捉系统获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f73d/7514188/0bc68bcf8444/entropy-21-00079-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验