Suppr超能文献

柯克伍德叠加近似的最大熵公式化表述。

Maximum entropy formulation of the Kirkwood superposition approximation.

作者信息

Singer A

机构信息

Department of Applied Mathematics, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel.

出版信息

J Chem Phys. 2004 Aug 22;121(8):3657-66. doi: 10.1063/1.1776552.

Abstract

Using a variational formulation, we derive the Kirkwood superposition approximation for systems at equilibrium in the thermodynamic limit. We define the entropy of the triplet correlation function and show that the Kirkwood closure brings the entropy to its maximal value. This approach leads to a different interpretation for the Kirkwood closure relation, usually explained by probabilistic considerations of dependence and independence of particles. The Kirkwood closure is generalized to finite volume systems at equilibrium by computing the pair correlation function in finite domains. Closure relations for high order correlation functions are also found using a variational approach. In particular, maximizing the entropy of quadruplets leads to the high order closure g(1234)=g(123)g(124)g(134)g(234)/[g(12)g(13)g(14)g(23)g(24)g(34)] used in the Born-Green-Yvon 2 equations which are a pair of integral equations for the triplet and pair correlation functions.

摘要

利用变分公式,我们推导出了热力学极限下处于平衡态系统的柯克伍德叠加近似。我们定义了三重关联函数的熵,并表明柯克伍德封闭条件使熵达到最大值。这种方法对柯克伍德封闭关系给出了不同的解释,通常是通过对粒子依赖性和独立性的概率考量来解释的。通过在有限域中计算对关联函数,将柯克伍德封闭条件推广到了处于平衡态的有限体积系统。还使用变分方法找到了高阶关联函数的封闭关系。特别地,使四重态的熵最大化会得到用于博恩 - 格林 - 伊冯方程中的高阶封闭条件(g(1234)=g(123)g(124)g(134)g(234)/[g(12)g(13)g(14)g(23)g(24)g(34)]),博恩 - 格林 - 伊冯方程是关于三重关联函数和对关联函数的一对积分方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验