Unit of Environmental Engineering, University of Innsbruck, Technikerstraße 13, Innsbruck 6020, Austria.
Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz 8010, Austria.
Sci Total Environ. 2023 May 15;873:162149. doi: 10.1016/j.scitotenv.2023.162149. Epub 2023 Feb 10.
Wastewater-based epidemiology is widely applied in Austria since April 2020 to monitor the SARS-CoV-2 pandemic. With a steadily increasing number of monitored wastewater facilities, 123 plants covering roughly 70 % of the 9 million population were monitored as of August 2022. In this study, the SARS-CoV-2 viral concentrations in raw sewage were analysed to infer short-term hospitalisation occupancy. The temporal lead of wastewater-based epidemiological time series over hospitalisation occupancy levels facilitates the construction of forecast models. Data pre-processing techniques are presented, including the approach of comparing multiple decentralised wastewater signals with aggregated and centralised clinical data. Time‑lead quantification was performed using cross-correlation analysis and coefficient of determination optimisation approaches. Multivariate regression models were successfully applied to infer hospitalisation bed occupancy. The results show a predictive potential of viral loads in sewage towards Covid-19 hospitalisation occupancy, with an average lead time towards ICU and non-ICU bed occupancy between 14.8-17.7 days and 8.6-11.6 days, respectively. The presented procedure provides access to the trend and tipping point behaviour of pandemic dynamics and allows the prediction of short-term demand for public health services. The results showed an increase in forecast accuracy with an increase in the number of monitored wastewater treatment plants. Trained models are sensitive to changing variant types and require recalibration of model parameters, likely caused by immunity by vaccination and/or infection. The utilised approach displays a practical and rapidly implementable application of wastewater-based epidemiology to infer hospitalisation occupancy.
自 2020 年 4 月以来,奥地利广泛应用污水流行病学来监测 SARS-CoV-2 大流行。随着监测污水设施数量的稳步增加,截至 2022 年 8 月,监测了约 123 个工厂,覆盖了约 900 万人口的 70%。在这项研究中,分析了原始污水中的 SARS-CoV-2 病毒浓度,以推断短期住院占有率。污水流行病学时间序列对住院占有率水平的时间领先优势有助于构建预测模型。提出了数据预处理技术,包括将多个分散的污水信号与聚合和集中的临床数据进行比较的方法。使用互相关分析和确定系数优化方法进行了时间领先量化。多元回归模型成功地应用于推断住院床位占有率。结果表明,污水中的病毒载量对新冠住院占有率具有预测潜力,与 ICU 和非 ICU 床位占有率的平均领先时间分别为 14.8-17.7 天和 8.6-11.6 天。所提出的程序提供了对大流行动态趋势和转折点行为的访问,并允许对短期公共卫生服务需求进行预测。结果表明,随着监测污水处理厂数量的增加,预测精度也有所提高。训练有素的模型对不断变化的变异类型敏感,需要重新校准模型参数,这可能是由于疫苗接种和/或感染产生的免疫力所致。所采用的方法显示了污水流行病学在推断住院占有率方面的实用和快速实施应用。