Suppr超能文献

利用声学喷射形成并加载巨型单层囊泡。

Forming and loading giant unilamellar vesicles with acoustic jetting.

作者信息

Armstrong Maxim, Vahey Michael D, Hunt Thomas P, Fletcher Daniel A

机构信息

Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.

出版信息

Biomicrofluidics. 2020 Nov 19;14(6):064105. doi: 10.1063/5.0021742. eCollection 2020 Nov.

Abstract

Giant unilamellar vesicles (GUVs) are a useful platform for reconstituting and studying membrane-bound biological systems, offering reduced complexity compared to living cells. Several techniques exist to form GUVs and populate them with biomolecules of interest. However, a persistent challenge is the ability to efficiently and reliably load solutions of biological macromolecules, organelle-like membranes, and/or micrometer-scale particles with controlled stoichiometry in the encapsulated volume of GUVs. Here, we demonstrate the use of acoustic streaming from high-intensity focused ultrasound to make and load GUVs from bulk solutions, without the need for nozzles that can become clogged or otherwise alter the solution composition. In this method, a compact acoustic lens is focused on a planar lipid bilayer formed between two aqueous solutions. The actuation of a planar piezoelectric material coupled to the lens accelerates a small volume of liquid, deforming the bilayer and forming a GUV containing the solution on the transducer side of the bilayer. As demonstrated here, acoustic jetting offers an alternative method for the generation of GUVs for biological and biophysical studies.

摘要

巨型单层囊泡(GUVs)是用于重构和研究膜结合生物系统的有用平台,与活细胞相比,其复杂性较低。存在多种形成GUVs并使其填充感兴趣生物分子的技术。然而,一个长期存在的挑战是,能否在GUVs的包封体积中以可控的化学计量比高效、可靠地加载生物大分子溶液、细胞器样膜和/或微米级颗粒。在此,我们展示了利用高强度聚焦超声产生的声流从本体溶液中制备并加载GUVs,无需可能堵塞或改变溶液组成的喷嘴。在该方法中,一个紧凑的声透镜聚焦于两个水溶液之间形成的平面脂质双层。与透镜耦合的平面压电材料的驱动使一小部分液体加速,使双层变形,并在双层的换能器侧形成一个包含溶液的GUV。如此处所示,声喷射为生物和生物物理研究中产生GUVs提供了一种替代方法。

相似文献

1
Forming and loading giant unilamellar vesicles with acoustic jetting.
Biomicrofluidics. 2020 Nov 19;14(6):064105. doi: 10.1063/5.0021742. eCollection 2020 Nov.
2
Unilamellar vesicle formation and encapsulation by microfluidic jetting.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4697-702. doi: 10.1073/pnas.0710875105. Epub 2008 Mar 19.
5
Lipid bilayer vesicle generation using microfluidic jetting.
J Vis Exp. 2014 Feb 21(84):e51510. doi: 10.3791/51510.
6
Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
J Biosci Bioeng. 2018 Oct;126(4):540-545. doi: 10.1016/j.jbiosc.2018.04.019. Epub 2018 May 21.
7
One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
ACS Synth Biol. 2019 May 17;8(5):937-947. doi: 10.1021/acssynbio.9b00034. Epub 2019 May 6.
8
Mixing solutions in inkjet formed vesicles.
Methods Enzymol. 2009;465:75-94. doi: 10.1016/S0076-6879(09)65004-7.
9
Domain Sorting in Giant Unilamellar Vesicles Adsorbed on Glass.
Langmuir. 2021 Jan 26;37(3):1082-1088. doi: 10.1021/acs.langmuir.0c02843. Epub 2021 Jan 13.

引用本文的文献

1
Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics.
Int J Nanomedicine. 2021 Nov 3;16:7391-7416. doi: 10.2147/IJN.S331639. eCollection 2021.

本文引用的文献

1
On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis.
Micromachines (Basel). 2020 Mar 10;11(3):285. doi: 10.3390/mi11030285.
3
Size-dependent protein segregation at membrane interfaces.
Nat Phys. 2016 Jul;12(7):704-711. doi: 10.1038/nphys3678. Epub 2016 Mar 7.
4
Electroformation of giant unilamellar vesicles in saline solution.
Colloids Surf B Biointerfaces. 2016 Nov 1;147:368-375. doi: 10.1016/j.colsurfb.2016.08.018. Epub 2016 Aug 16.
5
Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques.
Eur Biophys J. 2017 Mar;46(2):103-119. doi: 10.1007/s00249-016-1155-9. Epub 2016 Jul 20.
6
Buffers affect the bending rigidity of model lipid membranes.
Langmuir. 2014 Jan 14;30(1):13-6. doi: 10.1021/la403565f. Epub 2014 Jan 3.
7
Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
Small. 2014 Mar 12;10(5):950-6. doi: 10.1002/smll.201301904. Epub 2013 Oct 22.
9
Membrane bending by protein-protein crowding.
Nat Cell Biol. 2012 Sep;14(9):944-9. doi: 10.1038/ncb2561. Epub 2012 Aug 19.
10
Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics.
Biomicrofluidics. 2011 Dec;5(4):44113-4411312. doi: 10.1063/1.3665221. Epub 2011 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验