Suppr超能文献

循环片上细菌分离和浓缩。

Cyclic on-chip bacteria separation and preconcentration.

机构信息

FMN Laboratory, Bauman Moscow State Technical University, Moscow, Russia, 105005.

Dukhov Research Institute of Automatics, Moscow, Russia, 127055.

出版信息

Sci Rep. 2020 Dec 3;10(1):21107. doi: 10.1038/s41598-020-78298-y.

Abstract

Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E. coli bacteria are sorted from nanoparticles and preconcentrated on a microfluidic chip with six integrated pneumatic valves (sub-100 nL dead volume) using hydrophilic PVDF filter with 0.45 μm pore diameter. The proposed on-chip automatic sorting sequence includes a sample filtration, dead volume washout and retentate backflush in reverse flow. We showed that pulse backflush mode and volume control can dramatically increase microparticles sorting and preconcentration efficiency. We demonstrate that at the optimal pulse backflush regime a separation efficiency of E. coli cells up to 81.33% at a separation throughput of 120.45 μL/min can be achieved. A trimmed mode when the backflush volume is twice smaller than the initial sample results in a preconcentration efficiency of E. coli cells up to 121.96% at a throughput of 80.93 μL/min. Finally, we propose a cyclic on-chip preconcentration method which demonstrates E. coli cells preconcentration efficiency of 536% at a throughput of 1.98 μL/min and 294% preconcentration efficiency at a 10.9 μL/min throughput.

摘要

在许多医疗保健和纳米科学工业应用中,纳米粒子和生物分子的高通量、稳健分离是人们非常感兴趣的。在这项工作中,我们报告了一种在微流控平台上使用集成膜阀控制微滤的方法,用于高效自动分离和浓缩不同大小的颗粒。使用具有 0.45μm 孔径的亲水性 PVDF 过滤器,在具有六个集成气动阀(<100nL 死体积)的微流控芯片上,从纳米颗粒中对微大肠杆菌进行分类并进行预浓缩。提出的芯片自动分类顺序包括样品过滤、死体积冲洗和反冲洗。我们表明,脉冲反冲洗模式和体积控制可以显著提高微颗粒的分类和浓缩效率。我们证明,在最佳的脉冲反冲洗模式下,分离效率高达 81.33%,分离通量为 120.45μL/min。当反冲洗体积是初始样品的两倍时,采用修剪模式可以使大肠杆菌细胞的浓缩效率达到 121.96%,通量为 80.93μL/min。最后,我们提出了一种循环芯片上浓缩方法,在 1.98μL/min 的流量下,大肠杆菌细胞的浓缩效率为 536%,在 10.9μL/min 的流量下,浓缩效率为 294%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecd1/7713219/aec5757e7579/41598_2020_78298_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验