Suppr超能文献

近红外光氧化还原催化平台的开发

Development of a Platform for Near-Infrared Photoredox Catalysis.

作者信息

Ravetz Benjamin D, Tay Nicholas E S, Joe Candice L, Sezen-Edmonds Melda, Schmidt Michael A, Tan Yichen, Janey Jacob M, Eastgate Martin D, Rovis Tomislav

机构信息

Department of Chemistry, Columbia University, New York, New York 10027, United States.

Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States.

出版信息

ACS Cent Sci. 2020 Nov 25;6(11):2053-2059. doi: 10.1021/acscentsci.0c00948. Epub 2020 Oct 20.

Abstract

Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ∼25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accommodate said catalytic inefficiency. Herein, we report photocatalysts which cleanly convert near-infrared (NIR) and deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin-orbit coupling (SOC) of Os(II) photosensitizers to directly access the excited triplet state (T) with NIR or DR irradiation from the ground state singlet (S). Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions which usually require 15-50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.

摘要

在过去十年中,化学家们对可见光光氧化还原催化青睐有加,因为它具有激活小分子的卓越能力。一般来说,这些方法采用金属配合物或有机染料将可见光转化为化学能。不幸的是,广泛使用的钌(Ru)和铱(Ir)发色团的激发在能量上是浪费的,因为约25%的光能在有效猝灭之前就以热的形式损失了。因此,光氧化还原方法需要高能、强光来弥补这种催化效率低下的问题。在此,我们报道了一种光催化剂,它能将近红外(NIR)和深红色(DR)光高效地转化为化学能,且能量浪费极少。我们利用锇(Os(II))光敏剂的强自旋轨道耦合(SOC),通过从基态单重态(S)进行近红外或深红色光照射,直接进入激发三重态(T)。通过策略性的催化剂设计,我们实现了一系列通常需要高15 - 50%激发能量的光氧化还原、光聚合和金属光氧化还原反应。最后,我们通过在间歇反应器中进行摩尔规模的芳烃三氟甲基化反应,证明了近红外光氧化还原催化具有优异的光穿透性和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adcc/7706074/2cfd00b6ecc4/oc0c00948_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验