Suppr超能文献

深度学习在青光眼检测中的应用:系统评价。

Applications of deep learning in detection of glaucoma: A systematic review.

机构信息

Duke University School of Medicine, Durham, NC, USA.

Durham VA Medical Center, Durham, NC, USA.

出版信息

Eur J Ophthalmol. 2021 Jul;31(4):1618-1642. doi: 10.1177/1120672120977346. Epub 2020 Dec 4.

Abstract

Glaucoma is the leading cause of irreversible blindness and disability worldwide. Nevertheless, the majority of patients do not know they have the disease and detection of glaucoma progression using standard technology remains a challenge in clinical practice. Artificial intelligence (AI) is an expanding field that offers the potential to improve diagnosis and screening for glaucoma with minimal reliance on human input. Deep learning (DL) algorithms have risen to the forefront of AI by providing nearly human-level performance, at times exceeding the performance of humans for detection of glaucoma on structural and functional tests. A succinct summary of present studies and challenges to be addressed in this field is needed. Following PRISMA guidelines, we conducted a systematic review of studies that applied DL methods for detection of glaucoma using color fundus photographs, optical coherence tomography (OCT), or standard automated perimetry (SAP). In this review article we describe recent advances in DL as applied to the diagnosis of glaucoma and glaucoma progression for application in screening and clinical settings, as well as the challenges that remain when applying this novel technique in glaucoma.

摘要

青光眼是全球导致不可逆性失明和残疾的主要原因。然而,大多数患者并不知道自己患有该病,并且使用标准技术检测青光眼的进展仍然是临床实践中的一个挑战。人工智能(AI)是一个不断发展的领域,它有可能在最小程度地依赖人工输入的情况下改善青光眼的诊断和筛查。深度学习(DL)算法通过提供近乎人类水平的性能,在某些情况下超过了人类在结构和功能测试中检测青光眼的性能,从而成为 AI 的前沿领域。需要对该领域目前的研究和需要解决的挑战进行简洁总结。根据 PRISMA 指南,我们对应用 DL 方法通过眼底彩色照片、光学相干断层扫描(OCT)或标准自动视野计(SAP)检测青光眼的研究进行了系统评价。在这篇综述文章中,我们描述了最近在将 DL 应用于青光眼诊断和青光眼进展方面的进展,以便在筛查和临床环境中应用,以及在将这项新技术应用于青光眼时仍然存在的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验