文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工神经网络在青光眼进展研究中的应用。

The use of artificial neural networks in studying the progression of glaucoma.

机构信息

Ophthalmology Department, Faculty of Medicine, University of Medicine and Pharmacy "Gr. T. Popa" Iasi, University Street No 16, 700115, Iasi, Romania.

Faculty of Automatic Control and Computer Engineering, "Gheorghe Asachi" Technical University of Iasi, 27 Mangeron Street, 700050, Iasi, Romania.

出版信息

Sci Rep. 2024 Aug 23;14(1):19597. doi: 10.1038/s41598-024-70748-1.


DOI:10.1038/s41598-024-70748-1
PMID:39179625
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11344130/
Abstract

In ophthalmology, artificial intelligence methods show great promise due to their potential to enhance clinical observations with predictive capabilities and support physicians in diagnosing and treating patients. This paper focuses on modelling glaucoma evolution because it requires early diagnosis, individualized treatment, and lifelong monitoring. Glaucoma is a chronic, progressive, irreversible, multifactorial optic neuropathy that primarily affects elderly individuals. It is important to emphasize that the processed data are taken from medical records, unlike other studies in the literature that rely on image acquisition and processing. Although more challenging to handle, this approach has the advantage of including a wide range of parameters in large numbers, which can highlight their potential influence. Artificial neural networks are used to study glaucoma progression, designed through successive trials for near-optimal configurations using the NeuroSolutions and PyTorch frameworks. Furthermore, different problems are formulated to demonstrate the influence of various structural and functional parameters on the study of glaucoma progression. Optimal neural networks were obtained using a program written in Python using the PyTorch deep learning framework. For various tasks, very small errors in training and validation, under 5%, were obtained. It has been demonstrated that very good results can be achieved, making them credible and useful for medical practice.

摘要

在眼科学中,人工智能方法具有很大的应用前景,因为它们具有增强临床观察能力的潜力,同时还可以为医生提供诊断和治疗患者的支持。本文专注于建模青光眼的演变,因为它需要早期诊断、个体化治疗和终身监测。青光眼是一种慢性、进行性、不可逆转的多因素视神经病变,主要影响老年人。值得强调的是,处理后的数据来自于病历,与文献中的其他研究不同,后者依赖于图像采集和处理。尽管这种方法更具挑战性,但它具有一个优势,即可以在大量参数中包含广泛的参数,从而突出其潜在的影响。人工神经网络用于研究青光眼的进展,通过使用 NeuroSolutions 和 PyTorch 框架进行连续试验来设计接近最优的配置。此外,还制定了不同的问题来演示各种结构和功能参数对青光眼进展研究的影响。使用 Python 编写的程序和 PyTorch 深度学习框架获得了最优的神经网络。对于各种任务,在训练和验证中,误差非常小,都低于 5%。已经证明可以取得非常好的结果,这使得它们在医学实践中具有可信度和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/5b0a44f3613f/41598_2024_70748_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/eef2cd1188d0/41598_2024_70748_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/5a043d5a4504/41598_2024_70748_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/35b40273bfc7/41598_2024_70748_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/db0577d45af8/41598_2024_70748_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/543b92d00290/41598_2024_70748_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/80a5d4ec6c24/41598_2024_70748_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/a32290294184/41598_2024_70748_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/5706ab58aa25/41598_2024_70748_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/3e252ee83acf/41598_2024_70748_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/394dcea8c335/41598_2024_70748_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/5b0a44f3613f/41598_2024_70748_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/eef2cd1188d0/41598_2024_70748_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/5a043d5a4504/41598_2024_70748_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/35b40273bfc7/41598_2024_70748_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/db0577d45af8/41598_2024_70748_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/543b92d00290/41598_2024_70748_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/80a5d4ec6c24/41598_2024_70748_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/a32290294184/41598_2024_70748_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/5706ab58aa25/41598_2024_70748_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/3e252ee83acf/41598_2024_70748_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/394dcea8c335/41598_2024_70748_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/11344130/5b0a44f3613f/41598_2024_70748_Fig11_HTML.jpg

相似文献

[1]
The use of artificial neural networks in studying the progression of glaucoma.

Sci Rep. 2024-8-23

[2]
[Application of artificial intelligence in glaucoma. Part 2. Neural networks and machine learning in the monitoring and treatment of glaucoma].

Vestn Oftalmol. 2024

[3]
Advancing glaucoma detection with convolutional neural networks: a paradigm shift in ophthalmology.

Rom J Ophthalmol. 2023

[4]
[Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis].

Vestn Oftalmol. 2024

[5]
An Artificial Intelligence Driven Approach for Classification of Ophthalmic Images using Convolutional Neural Network: An Experimental Study.

Curr Med Imaging. 2024

[6]
A hybrid framework for glaucoma detection through federated machine learning and deep learning models.

BMC Med Inform Decis Mak. 2024-5-2

[7]
Artificial intelligence in ophthalmology.

Rom J Ophthalmol. 2023

[8]
3D augmented fundus images for identifying glaucoma via transferred convolutional neural networks.

Int Ophthalmol. 2021-6

[9]
A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection.

Math Biosci Eng. 2024-3-4

[10]
The application of artificial intelligence in glaucoma diagnosis and prediction.

Front Cell Dev Biol. 2023-5-4

引用本文的文献

[1]
The Role of Artificial Intelligence in Predicting the Progression of Intraocular Hypertension to Glaucoma.

Life (Basel). 2025-5-27

本文引用的文献

[1]
Classification Algorithms Used in Predicting Glaucoma Progression.

Healthcare (Basel). 2022-9-22

[2]
Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing.

Ophthalmol Sci. 2022-2-12

[3]
A deep-learning system predicts glaucoma incidence and progression using retinal photographs.

J Clin Invest. 2022-6-1

[4]
Artificial intelligence in glaucoma.

Indian J Ophthalmol. 2022-5

[5]
Diagnostic Accuracy of Artificial Intelligence in Glaucoma Screening and Clinical Practice.

J Glaucoma. 2022-5-1

[6]
Detecting glaucoma with only OCT: Implications for the clinic, research, screening, and AI development.

Prog Retin Eye Res. 2022-9

[7]
The Role of Artificial Intelligence in the Diagnosis and Management of Glaucoma.

J Glaucoma. 2022-3-1

[8]
Can Artificial Intelligence Predict Glaucomatous Visual Field Progression? A Spatial-Ordinal Convolutional Neural Network Model.

Am J Ophthalmol. 2022-1

[9]
Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning.

PLoS One. 2021

[10]
Applications of deep learning in detection of glaucoma: A systematic review.

Eur J Ophthalmol. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索