Suppr超能文献

候选口腔益生菌的定殖可减弱……的定殖和毒力 。 你提供的原文似乎不完整,后面缺少具体的病原体等相关内容。

Colonization with Candidate Oral Probiotics Attenuates Colonization and Virulence of .

作者信息

Culp David J, Hull William, Bremgartner Matthew J, Atherly Todd A, Christian Kacey N, Killeen Mary, Dupuis Madeline R, Schultz Alexander C, Chakraborty Brinta, Lee Kyulim, Wang Deneen S, Afzal Verisha, Chen Timmy, Burne Robert A

机构信息

UF College of Dentistry, Department of Oral Biology, P.O. Box 100424, Gainesville, FL 32610-3003

UF College of Dentistry, Department of Oral Biology, P.O. Box 100424, Gainesville, FL 32610-3003.

出版信息

Appl Environ Microbiol. 2021 Mar 1;87(4). doi: 10.1128/AEM.02490-20. Epub 2020 Dec 4.

Abstract

A collection of 113 strains from supragingival dental plaque of caries-free individuals were recently tested for direct antagonism of the dental caries pathogen , and for their capacity for arginine catabolism via the arginine deiminase system (ADS). To advance their evaluation as potential probiotics, twelve strains of commensal oral streptococci with various antagonistic and ADS potentials were assessed in a mouse model for oral (i.e., oral mucosal pellicles and saliva) and dental colonization under four diets (healthy or high-sucrose, with or without prebiotic arginine). Colonization by autochthonous bacteria was also monitored. One strain failed to colonize, whereas oral colonization by the other eleven strains varied by 3 log units. Dental colonization was high for five strains regardless of diet, six strains increased colonization with at least one high-sucrose diet, and added dietary arginine decreased dental colonization of two strains. sp. A12 (high ADS activity and antagonism) and two engineered mutants lacking the ADS (Δ) or pyruvate oxidase-mediated HO production (Δ) were tested for competition against UA159. A12 wild type and Δ colonized only transiently, whereas Δ persisted, but without altering oral or dental colonization by In testing four additional candidates, BCC23 markedly attenuated oral and dental colonization, enhanced colonization of autochthonous bacteria, and decreased severity of smooth surface caries under highly cariogenic conditions. Results demonstrate the utility of the mouse model to evaluate potential probiotics, revealing little correlation between antagonism and competitiveness against Our results demonstrate testing of potential oral probiotics can be accomplished and can yield information to facilitate the ultimate design and optimization of novel anti-caries probiotics. We show human oral commensals associated with dental health are an important source of potential probiotics that may be used to colonize patients under dietary conditions of highly varying cariogenicity. Assessment of competitiveness against dental caries pathogen and impact on caries identified strains or genetic elements for further study. Results also uncovered strains that enhanced oral and dental colonization by autochthonous bacteria when challenged with , suggesting cooperative interactions for future elucidation. Distinguishing a rare strain that effectively compete with under conditions that promote caries further validates our systematic approach to more critically evaluate probiotics for use in humans.

摘要

最近对113株来自无龋个体龈上牙菌斑的菌株进行了测试,以检测它们对龋齿病原体的直接拮抗作用,以及它们通过精氨酸脱亚氨酶系统(ADS)进行精氨酸分解代谢的能力。为了进一步评估它们作为潜在益生菌的价值,在小鼠模型中评估了12株具有不同拮抗和ADS潜力的共生口腔链球菌在四种饮食(健康或高蔗糖,有无益生元精氨酸)条件下在口腔(即口腔粘膜薄膜和唾液)和牙齿上的定殖情况。还监测了本土细菌的定殖情况。一株未能定殖,而其他11株在口腔中的定殖情况相差3个对数单位。无论饮食如何,有5株在牙齿上的定殖率都很高,6株在至少一种高蔗糖饮食下增加了定殖率,而添加饮食精氨酸降低了2株的牙齿定殖率。测试了具有高ADS活性和拮抗作用的A12菌株以及两个缺乏ADS(Δ)或丙酮酸氧化酶介导的HO产生(Δ)的工程突变体与UA159的竞争情况。A12野生型和Δ仅短暂定殖,而Δ持续存在,但未改变的口腔或牙齿定殖情况。在测试另外四个候选菌株时,BCC23显著减弱了口腔和牙齿定殖,增强了本土细菌的定殖,并在高致龋条件下降低了光滑表面龋齿的严重程度。结果证明了小鼠模型在评估潜在益生菌方面的实用性,揭示了拮抗作用与对的竞争力之间几乎没有相关性。我们的结果表明,可以完成对潜在口腔益生菌的测试,并可以产生信息以促进新型抗龋益生菌的最终设计和优化。我们表明,与牙齿健康相关的人类口腔共生菌是潜在益生菌的重要来源,可用于在致龋性差异很大的饮食条件下对患者进行定殖。评估对龋齿病原体的竞争力以及对龋齿的影响,确定了有待进一步研究的菌株或遗传元件。结果还发现了一些菌株,当受到挑战时,它们会增强本土细菌在口腔和牙齿上的定殖,这表明未来需要阐明其合作相互作用。区分出一种在促进龋齿的条件下能有效与竞争的罕见菌株,进一步验证了我们更严格评估用于人类的益生菌的系统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe9c/7851695/0ae921c3a279/AEM.02490-20-f0001.jpg

相似文献

1
Colonization with Candidate Oral Probiotics Attenuates Colonization and Virulence of .
Appl Environ Microbiol. 2021 Mar 1;87(4). doi: 10.1128/AEM.02490-20. Epub 2020 Dec 4.
2
Testing of candidate probiotics to prevent dental caries induced by Streptococcus mutans in a mouse model.
J Appl Microbiol. 2022 May;132(5):3853-3869. doi: 10.1111/jam.15516. Epub 2022 Mar 22.
3
Novel Probiotic Mechanisms of the Oral Bacterium sp. A12 as Explored with Functional Genomics.
Appl Environ Microbiol. 2019 Oct 16;85(21). doi: 10.1128/AEM.01335-19. Print 2019 Nov 1.
4
Diversity in Antagonistic Interactions between Commensal Oral Streptococci and Streptococcus mutans.
Caries Res. 2018;52(1-2):88-101. doi: 10.1159/000479091. Epub 2017 Dec 20.
5
Amino Sugars Modify Antagonistic Interactions between Commensal Oral Streptococci and .
Appl Environ Microbiol. 2019 May 2;85(10). doi: 10.1128/AEM.00370-19. Print 2019 May 15.
7
A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.
Appl Environ Microbiol. 2016 Jan 29;82(7):2187-201. doi: 10.1128/AEM.03887-15.
8
Species Designations Belie Phenotypic and Genotypic Heterogeneity in Oral Streptococci.
mSystems. 2018 Dec 18;3(6). doi: 10.1128/mSystems.00158-18. eCollection 2018 Nov-Dec.
9
Effects of Antimicrobial Peptide GH12 on the Cariogenic Properties and Composition of a Cariogenic Multispecies Biofilm.
Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.01423-18. Print 2018 Dec 15.
10
Preventive effects of probiotics on dental caries in vitro and in vivo.
BMC Oral Health. 2024 Aug 8;24(1):915. doi: 10.1186/s12903-024-04703-x.

引用本文的文献

1
Fructose activates a stress response shared by methylglyoxal and hydrogen peroxide in .
mBio. 2025 May 14;16(5):e0048525. doi: 10.1128/mbio.00485-25. Epub 2025 Apr 17.
2
A strain of inhibits biofilm formation of caries pathogens via abundant hydrogen peroxide production.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0219224. doi: 10.1128/aem.02192-24. Epub 2025 Feb 25.
3
Evaluation of a strain from plants as a novel promising probiotic in dental caries management.
J Oral Microbiol. 2024 Nov 3;16(1):2420612. doi: 10.1080/20002297.2024.2420612. eCollection 2024.
4
A Strain of Inhibits Biofilm Formation of Caries Pathogens via Abundant Hydrogen Peroxide Production.
bioRxiv. 2024 Aug 6:2024.08.06.606862. doi: 10.1101/2024.08.06.606862.
5
Genetic characterization of glyoxalase pathway in oral streptococci and its contribution to interbacterial competition.
J Oral Microbiol. 2024 Mar 3;16(1):2322241. doi: 10.1080/20002297.2024.2322241. eCollection 2024.
9
Manganese transport by Streptococcus sanguinis in acidic conditions and its impact on growth in vitro and in vivo.
Mol Microbiol. 2022 Feb;117(2):375-393. doi: 10.1111/mmi.14854. Epub 2021 Dec 18.
10
Murine Salivary Amylase Protects Against -Induced Caries.
Front Physiol. 2021 Jul 2;12:699104. doi: 10.3389/fphys.2021.699104. eCollection 2021.

本文引用的文献

1
A Review of the Role of Probiotic Supplementation in Dental Caries.
Probiotics Antimicrob Proteins. 2020 Dec;12(4):1300-1309. doi: 10.1007/s12602-020-09652-9.
2
Chapter 10: Probiotic Bacteria and Dental Caries.
Monogr Oral Sci. 2020;28:99-107. doi: 10.1159/000455377. Epub 2019 Nov 7.
3
4
Metabolic Profile of Supragingival Plaque Exposed to Arginine and Fluoride.
J Dent Res. 2019 Oct;98(11):1245-1252. doi: 10.1177/0022034519869906. Epub 2019 Aug 27.
5
Novel Probiotic Mechanisms of the Oral Bacterium sp. A12 as Explored with Functional Genomics.
Appl Environ Microbiol. 2019 Oct 16;85(21). doi: 10.1128/AEM.01335-19. Print 2019 Nov 1.
6
Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis.
Annu Rev Microbiol. 2019 Sep 8;73:335-358. doi: 10.1146/annurev-micro-090817-062503. Epub 2019 Jun 10.
7
Fluorescence Tools Adapted for Real-Time Monitoring of the Behaviors of Species.
Appl Environ Microbiol. 2019 Jul 18;85(15). doi: 10.1128/AEM.00620-19. Print 2019 Aug 1.
8
Species Designations Belie Phenotypic and Genotypic Heterogeneity in Oral Streptococci.
mSystems. 2018 Dec 18;3(6). doi: 10.1128/mSystems.00158-18. eCollection 2018 Nov-Dec.
9
Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome.
Mol Oral Microbiol. 2018 Oct;33(5):337-352. doi: 10.1111/omi.12231. Epub 2018 Jul 15.
10
Salivary secretion in health and disease.
J Oral Rehabil. 2018 Sep;45(9):730-746. doi: 10.1111/joor.12664. Epub 2018 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验