Suppr超能文献

基于 Hessian 指数的放射组学特征预测头颈部癌症患者的预后。

Radiomic features based on Hessian index for prediction of prognosis in head-and-neck cancer patients.

机构信息

Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.

出版信息

Sci Rep. 2020 Dec 4;10(1):21301. doi: 10.1038/s41598-020-78338-7.

Abstract

This study demonstrated the usefulness of radiomic features based on the Hessian index of differential topology for the prediction of prognosis prior to treatment in head-and-neck (HN) cancer patients. The Hessian index, which can indicate tumor heterogeneity with convex, concave, and other points (saddle points), was calculated as the number of negative eigenvalues of the Hessian matrix at each voxel on computed tomography (CT) images. Three types of signatures were constructed in a training cohort (n = 126), one type each from CT conventional features, Hessian index features, and combined features from the conventional and index feature sets. The prognostic value of the signatures were evaluated using statistically significant difference (p value, log-rank test) to compare the survival curves of low- and high-risk groups. In a test cohort (n = 68), the p values of the models built with conventional, index, combined features, and clinical variables were 2.95 [Formula: see text] 10, 1.85 [Formula: see text] 10, 3.17 [Formula: see text] 10, and 1.87 [Formula: see text] 10, respectively. When the features were integrated with clinical variables, the p values of conventional, index, and combined features were 3.53 [Formula: see text] 10, 1.28 [Formula: see text] 10, and 1.45 [Formula: see text] 10, respectively. This result indicates that index features could provide more prognostic information than conventional features and further increase the prognostic value of clinical variables in HN cancer patients.

摘要

本研究证明了基于微分拓扑 Hessian 指数的放射组学特征在头颈部(HN)癌症患者治疗前预测预后中的有用性。Hessian 指数可以指示肿瘤的异质性,包括凸、凹和其他点(鞍点),可以通过计算 CT 图像上每个体素的 Hessian 矩阵的负特征值来计算。在训练队列(n=126)中构建了三种类型的特征签名,一种来自 CT 常规特征,一种来自 Hessian 指数特征,另一种来自常规和指数特征集的组合特征。使用统计学显著差异(p 值,对数秩检验)来评估签名的预后价值,以比较低风险组和高风险组的生存曲线。在测试队列(n=68)中,使用常规、指数、组合特征和临床变量构建的模型的 p 值分别为 2.95×10-5、1.85×10-5、3.17×10-5 和 1.87×10-5。当特征与临床变量结合时,常规、指数和组合特征的 p 值分别为 3.53×10-5、1.28×10-5 和 1.45×10-5。这一结果表明,指数特征可以提供比常规特征更多的预后信息,并进一步增加临床变量在 HN 癌症患者中的预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c52/7718925/b3b82cca0061/41598_2020_78338_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验