Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, 201303, India.
Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa.
Sci Rep. 2020 Dec 4;10(1):21217. doi: 10.1038/s41598-020-78068-w.
The gastric colonization of human hosts by Helicobacter pylori (H. pylori) increases the risk of developing gastritis, ulcers and gastric cancer. To detect H. pylori, a nanohybrid-based BabA immunosensor is developed herein. BabA is an outer membrane protein and one of the major virulence factors of H. pylori. To design the immunosensor, an Au electrode is loaded with palladium nanoparticles (Pd) by electrodeposition to generate reduced graphene oxide (rGO)/poly(3,4-ethylenedioxythiophene) (PEDOT). The immobilization of these nanostructured materials imparts a large surface area and electroconductivity to bio-immune-sensing molecules (here, the BabA antigen and antibodies). After optimization, the fabricated immunosensor has the ability to detect antigens (H. pylori) in a linear range from 0.2 to 20 ng/mL with a low LOD (0.2 ng/mL). The developed immunosensor is highly specific, sensitive and reproducible. Additionally, in silico methods were employed to better understand the hybrid nanomaterials of the fabricated Pd/rGO/PEDOT/Au electrode. Simulations performed by molecular docking, and Metropolis Monte Carlo adsorption studies were conducted. The results revealed that the hybrid nanomaterials exhibit a stable antigen-antibody complex of BabA, yielding the lowest binding energy in relation to the electrode materials, emphasizing the functionality of the constructed electrodes in the electrochemical immunosensor.
人宿主的幽门螺杆菌(H. pylori)定植会增加患胃炎、溃疡和胃癌的风险。为了检测 H. pylori,本文开发了一种基于纳米杂化的 BabA 免疫传感器。BabA 是一种外膜蛋白,也是 H. pylori 的主要毒力因子之一。为了设计免疫传感器,通过电沉积将 Au 电极加载钯纳米粒子(Pd)以生成还原氧化石墨烯(rGO)/聚(3,4-乙二氧基噻吩)(PEDOT)。这些纳米结构材料的固定赋予了生物免疫传感分子(此处为 BabA 抗原和抗体)较大的表面积和导电性。经过优化,所制备的免疫传感器能够以 0.2 至 20ng/mL 的线性范围检测抗原(H. pylori),具有较低的检测限(0.2ng/mL)。所开发的免疫传感器具有高特异性、高灵敏度和可重复性。此外,还采用了计算方法来更好地理解所制备的 Pd/rGO/PEDOT/Au 电极的杂化纳米材料。进行了分子对接和 metropolis 蒙特卡罗吸附研究的模拟。结果表明,杂化纳米材料表现出稳定的 BabA 抗原-抗体复合物,与电极材料相比具有最低的结合能,强调了构建的电极在电化学免疫传感器中的功能。