Suppr超能文献

通过 QSAR、分子对接和 ADMET 研究检测针对人肝癌细胞系的天然抑制剂。

Detection of Natural Inhibitors against Human Liver Cancer Cell Lines through QSAR, Molecular Docking and ADMET Studies.

机构信息

Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal & Aromatic Plants, Lucknow 226015 (Uttar Pradesh), India.

Molecular Bioprospection Department, CSIR-Central Institute of Medicinal & Aromatic Plants, Lucknow 226015 (Uttar Pradesh), India.

出版信息

Curr Top Med Chem. 2021;21(8):686-695. doi: 10.2174/1568026620666201204155830.

Abstract

BACKGROUND

Liver cancer is ranked as the fifth most prevalent and third most lethal cancer worldwide. The incidence rates of this cancer are on the rise, and only limited treatment options are available.

METHODS

To identify and optimize the inhibitors of liver cancer cell-lines, a QSAR model was developed by using multiple linear regression methods. The robustness of the model was validated through statistical methods and wet-lab experiments.

RESULTS

The developed QSAR models yielded high activity descriptor relationship accuracy of 91%, referred to by regression coefficient (r= 0.91), and a high activity prediction accuracy of 89%. The external predicted (pred_r) ability of the model was found to be 90%.

CONCLUSION

The QSAR study indicates that chemical descriptors such as to measure of electronegative atom count (Epsilon3), atom type count descriptors (MMFF_10), number of a carbon atom connected with four single bonds (SssssCE- index), molecular weight and, number of oxygen atom connected with two aromatic bonds (SaaOE-index) are significantly correlated with anticancer activity. The model, which was validated statistically and through wet-lab experiments, was further used in the virtual screening of potential inhibitors against the liver cancer cell line WRL68. ADMET risk screening, synthetic accessibility, and Lipinski's rule of five are used to filter false positive hits. AfterwardS, to achieve a set of aligned ligand poses and rank the predicted active compounds, docking studies were carried out. The studied compounds and their metabolites were also analyzed for different pharmacokinetics parameters. Finally, a series of compounds was proposed as anticancer agents.

摘要

背景

肝癌在全球范围内排名第五,是最常见的癌症之一,也是致死率第三高的癌症。这种癌症的发病率正在上升,而可用的治疗选择却非常有限。

方法

为了鉴定和优化肝癌细胞系的抑制剂,我们采用多元线性回归方法建立了一个定量构效关系(QSAR)模型。该模型通过统计方法和湿实验室实验进行了稳健性验证。

结果

所开发的 QSAR 模型具有 91%的高活性描述符关系准确性(回归系数 r=0.91)和 89%的高活性预测准确性。模型的外部预测(pred_r)能力为 90%。

结论

QSAR 研究表明,化学描述符如测量电负性原子数(Epsilon3)、原子类型计数描述符(MMFF_10)、与四个单键相连的碳原子数(SssssCE-index)、分子量和与两个芳环键相连的氧原子数(SaaOE-index)与抗癌活性显著相关。该模型经过统计学和湿实验室实验验证后,进一步用于虚拟筛选潜在的肝癌细胞系 WRL68 抑制剂。ADMET 风险筛选、合成可及性和 Lipinski 的五规则用于筛选假阳性命中。之后,为了实现一组对齐的配体构象并对预测的活性化合物进行排名,进行了对接研究。还分析了研究化合物及其代谢物的不同药代动力学参数。最后,提出了一系列化合物作为抗癌剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验