Suppr超能文献

新冠疫情、封锁措施与幸福感:来自谷歌趋势的证据

COVID-19, lockdowns and well-being: Evidence from Google Trends.

作者信息

Brodeur Abel, Clark Andrew E, Fleche Sarah, Powdthavee Nattavudh

机构信息

University of Ottawa, Canada.

IZA, Germany.

出版信息

J Public Econ. 2021 Jan;193:104346. doi: 10.1016/j.jpubeco.2020.104346. Epub 2020 Nov 30.

Abstract

The COVID-19 pandemic and government intervention such as lockdowns may severely affect people's mental health. While lockdowns can help to contain the spread of the virus, they may result in substantial damage to population well-being. We use Google Trends data to test whether COVID-19 and the associated lockdowns implemented in Europe and America led to changes in well-being related topic search-terms. Using difference-in-differences and a regression discontinuity design, we find a substantial increase in the search intensity for boredom in Europe and the US. We also found a significant increase in searches for loneliness, worry and sadness, while searches for stress, suicide and divorce on the contrary fell. Our results suggest that people's mental health may have been severely affected by the pandemic and lockdown.

摘要

新冠疫情以及诸如封锁等政府干预措施可能会严重影响人们的心理健康。虽然封锁有助于遏制病毒传播,但它们可能会对民众的幸福造成重大损害。我们使用谷歌趋势数据来测试新冠疫情以及欧美实施的相关封锁措施是否导致了与幸福感相关的主题搜索词的变化。通过双重差分法和回归断点设计,我们发现欧美地区无聊相关搜索强度大幅增加。我们还发现孤独、担忧和悲伤的搜索量显著增加,而压力、自杀和离婚的搜索量则相反有所下降。我们的结果表明,疫情和封锁可能严重影响了人们的心理健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a8/7703221/8d9d24bfb8cc/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验