Lafond Mickael, Tauzin Alexandra S, Bruel Laetitia, Laville Elisabeth, Lombard Vincent, Esque Jérémy, André Isabelle, Vidal Nicolas, Pompeo Frédérique, Quinson Nathalie, Perrier Josette, Fons Michel, Potocki-Veronese Gabrielle, Giardina Thierry
Aix-Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France.
TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
Front Microbiol. 2020 Nov 12;11:579521. doi: 10.3389/fmicb.2020.579521. eCollection 2020.
Plant α-galactosides belonging to the raffinose family oligosaccharides (RFOs) and considered as prebiotics, are commonly degraded by α-galactosidases produced by the human gut microbiome. In this environment, the E1 symbiont-well-known for various benefit-is able to produce an original AgaSK bifunctional enzyme. This enzyme contains an hydrolytic α-galactosidase domain linked to an ATP dependent extra-domain, specifically involved in the α-galactoside hydrolysis and the phosphorylation of the glucose, respectively. However, the multi-modular relationships between both catalytic domains remained hitherto unexplored and has been, consequently, herein investigated. Biochemical characterization of heterologously expressed enzymes either in full-form or in separated domains revealed similar kinetic parameters. These results were supported by molecular modeling studies performed on the whole enzyme in complex with different RFOs. Further enzymatic analysis associated with kinetic degradation of various substrates followed by high pressure anionic exchange chromatography revealed that catalytic efficiency decreased as the number of D-galactosyl moieties branched onto the oligosaccharide increased, suggesting a preference of AgaSK for RFO's short chains. A wide prevalence and abundance study on a human metagenomic library showed a high prevalence of the AgaSK encoding gene whatever the health status of the individuals. Finally, phylogeny and synteny studies suggested a limited spread by horizontal transfer of the clusters' containing AgaSK to only few species of Firmicutes, highlighting the importance of these undispersed tandem activities in the human gut microbiome.
属于棉子糖家族寡糖(RFOs)且被视为益生元的植物α-半乳糖苷,通常会被人类肠道微生物群产生的α-半乳糖苷酶降解。在这种环境中,以各种益处而闻名的E1共生体能够产生一种独特的AgaSK双功能酶。这种酶包含一个与ATP依赖的额外结构域相连的水解α-半乳糖苷酶结构域,分别专门参与α-半乳糖苷的水解和葡萄糖的磷酸化。然而,两个催化结构域之间的多模块关系迄今尚未得到探索,因此本文对此进行了研究。对以全长形式或分离结构域形式异源表达的酶进行生化表征,结果显示动力学参数相似。这些结果得到了对与不同RFOs结合的全酶进行的分子建模研究的支持。进一步的酶促分析结合各种底物的动力学降解,随后进行高压阴离子交换色谱分析,结果表明,随着分支到寡糖上的D-半乳糖基部分数量的增加,催化效率降低,这表明AgaSK对RFO的短链具有偏好性。对人类宏基因组文库进行的广泛流行率和丰度研究表明,无论个体的健康状况如何,编码AgaSK的基因都具有很高的流行率。最后,系统发育和共线性研究表明,包含AgaSK的簇通过水平转移仅在少数厚壁菌门物种中有限传播,突出了这些未分散的串联活性在人类肠道微生物群中的重要性。