Suppr超能文献

α-半乳糖苷酶/蔗糖激酶(AgaSK),一种来自人类微生物组的新型双功能酶,具有半乳糖苷酶和激酶活性。

α-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities.

机构信息

Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20, France.

出版信息

J Biol Chem. 2011 Nov 25;286(47):40814-23. doi: 10.1074/jbc.M111.286039. Epub 2011 Sep 19.

Abstract

α-Galactosides are non-digestible carbohydrates widely distributed in plants. They are a potential source of energy in our daily food, and their assimilation by microbiota may play a role in obesity. In the intestinal tract, they are degraded by microbial glycosidases, which are often modular enzymes with catalytic domains linked to carbohydrate-binding modules. Here we introduce a bifunctional enzyme from the human intestinal bacterium Ruminococcus gnavus E1, α-galactosidase/sucrose kinase (AgaSK). Sequence analysis showed that AgaSK is composed of two domains: one closely related to α-galactosidases from glycoside hydrolase family GH36 and the other containing a nucleotide-binding motif. Its biochemical characterization showed that AgaSK is able to hydrolyze melibiose and raffinose to galactose and either glucose or sucrose, respectively, and to specifically phosphorylate sucrose on the C6 position of glucose in the presence of ATP. The production of sucrose-6-P directly from raffinose points toward a glycolytic pathway in bacteria, not described so far. The crystal structures of the galactosidase domain in the apo form and in complex with the product shed light onto the reaction and substrate recognition mechanisms and highlight an oligomeric state necessary for efficient substrate binding and suggesting a cross-talk between the galactose and kinase domains.

摘要

α-半乳糖苷是广泛存在于植物中的不可消化的碳水化合物。它们是我们日常食物中潜在的能量来源,其被微生物群吸收可能在肥胖中起作用。在肠道中,它们被微生物糖苷酶降解,这些酶通常是具有与碳水化合物结合模块相连的催化结构域的模块化酶。在这里,我们介绍一种来自人类肠道细菌 Ruminococcus gnavus E1 的双功能酶,即α-半乳糖苷酶/蔗糖激酶(AgaSK)。序列分析表明,AgaSK 由两个结构域组成:一个与糖苷水解酶家族 GH36 的 α-半乳糖苷酶密切相关,另一个含有核苷酸结合基序。其生化特性表明,AgaSK 能够分别将蜜二糖和棉子糖水解为半乳糖和葡萄糖或蔗糖,并在有 ATP 的情况下特异性地将蔗糖在葡萄糖的 C6 位磷酸化。直接从棉子糖产生蔗糖-6-P 表明细菌中存在一种迄今为止尚未描述的糖酵解途径。无配体形式和与产物结合的半乳糖苷酶结构域的晶体结构阐明了反应和底物识别机制,并突出了高效底物结合所必需的寡聚状态,并暗示了半乳糖和激酶结构域之间的串扰。

相似文献

3
α-Galactosidase and Sucrose-Kinase Relationships in a Bi-functional AgaSK Enzyme Produced by the Human Gut Symbiont E1.
Front Microbiol. 2020 Nov 12;11:579521. doi: 10.3389/fmicb.2020.579521. eCollection 2020.
4
Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.
J Mol Biol. 2011 Sep 23;412(3):466-80. doi: 10.1016/j.jmb.2011.07.057. Epub 2011 Jul 30.
5
The Operon Encodes a Utilization System for the Raffinose Family of Oligosaccharides in .
J Bacteriol. 2019 Jul 10;201(15). doi: 10.1128/JB.00109-19. Print 2019 Aug 1.
8
Crystal Structure of α-Galactosidase from : Insight into Hexamer Assembly and Substrate Specificity.
J Agric Food Chem. 2020 Jun 3;68(22):6161-6169. doi: 10.1021/acs.jafc.0c00871. Epub 2020 May 20.
10
Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.
Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):154-167. doi: 10.1107/S2059798323000037. Epub 2023 Jan 20.

引用本文的文献

2
Ruminococcus gnavus: friend or foe for human health.
FEMS Microbiol Rev. 2023 Mar 10;47(2). doi: 10.1093/femsre/fuad014.
3
Microbiota alters the metabolome in an age- and sex- dependent manner in mice.
Nat Commun. 2023 Mar 11;14(1):1348. doi: 10.1038/s41467-023-37055-1.
4
Molecular advances in microbial α-galactosidases: challenges and prospects.
World J Microbiol Biotechnol. 2022 Jul 1;38(9):148. doi: 10.1007/s11274-022-03340-2.
5
Heterologous Expression of a Thermostable α-Galactosidase from Isolated from the Lignocellulolytic Microbial Consortium TMC7.
J Microbiol Biotechnol. 2022 Jun 28;32(6):749-760. doi: 10.4014/jmb.2201.01022. Epub 2022 May 16.
8
α-Galactosidase and Sucrose-Kinase Relationships in a Bi-functional AgaSK Enzyme Produced by the Human Gut Symbiont E1.
Front Microbiol. 2020 Nov 12;11:579521. doi: 10.3389/fmicb.2020.579521. eCollection 2020.
9
Sucrose 6-phosphate phosphorylase: a novel insight in the human gut microbiome.
Microb Genom. 2019 Apr;5(4). doi: 10.1099/mgen.0.000253. Epub 2019 Mar 26.
10
A β-mannan utilization locus in Bacteroides ovatus involves a GH36 α-galactosidase active on galactomannans.
FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28.

本文引用的文献

1
Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.
J Mol Biol. 2011 Sep 23;412(3):466-80. doi: 10.1016/j.jmb.2011.07.057. Epub 2011 Jul 30.
2
Effects of the gut microbiota on obesity and glucose homeostasis.
Trends Endocrinol Metab. 2011 Apr;22(4):117-23. doi: 10.1016/j.tem.2011.01.002. Epub 2011 Feb 23.
5
Role of gut microbiota in the control of energy and carbohydrate metabolism.
Curr Opin Clin Nutr Metab Care. 2010 Jul;13(4):432-8. doi: 10.1097/MCO.0b013e32833a8b60.
6
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
7
A human gut microbial gene catalogue established by metagenomic sequencing.
Nature. 2010 Mar 4;464(7285):59-65. doi: 10.1038/nature08821.
8
XDS.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. doi: 10.1107/S0907444909047337. Epub 2010 Jan 22.
9
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验