Suppr超能文献

基于表面等离子体激元的光学异质样品阻抗显微光谱学

Plasmonic-based impedance microspectroscopy of optically heterogeneous samples.

作者信息

Abayzeed Sidahmed A

机构信息

Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.

出版信息

Biomed Opt Express. 2020 Oct 8;11(11):6168-6180. doi: 10.1364/BOE.395474. eCollection 2020 Nov 1.

Abstract

A robust impedance microscopy technique is presented. This optical tool enables high resolution imaging of electrical properties with promising biophysical applications. The underlying principle is that surface plasmon resonance (SPR) sensors are able to measure perturbations of surface charge density and therefore can be used to compute the impedance of surface-adhered cells. However, the ability to perform reliable quantitative impedance imaging is affected by the optical heterogeneity of the cell-sensor interface. To address this issue, a novel method for quantitative time-resolved resonance angle tracking is developed and applied to correct for the effect of the optical properties. To demonstrate the capability of this technique, impedance microspectroscopy of bovine serum albumin (BSA) patterns was performed enabling measurements of capacitance with submicroscopic resolution. The work presented offers an impedance microspectroscopy method that will create new avenues in studying the electrical properties of single cells and biomolecules as well as bio-electrical currents.

摘要

本文提出了一种强大的阻抗显微镜技术。这种光学工具能够对电学性质进行高分辨率成像,具有广阔的生物物理应用前景。其基本原理是表面等离子体共振(SPR)传感器能够测量表面电荷密度的扰动,因此可用于计算表面粘附细胞的阻抗。然而,进行可靠的定量阻抗成像的能力受到细胞 - 传感器界面光学异质性的影响。为了解决这个问题,开发了一种用于定量时间分辨共振角跟踪的新方法,并应用该方法来校正光学性质的影响。为了证明该技术的能力,对牛血清白蛋白(BSA)图案进行了阻抗显微光谱分析,实现了亚微观分辨率的电容测量。本文所展示的工作提供了一种阻抗显微光谱方法,将为研究单细胞和生物分子的电学性质以及生物电流开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8ae/7687972/6390237213ca/boe-11-11-6168-g001.jpg

相似文献

1
Plasmonic-based impedance microspectroscopy of optically heterogeneous samples.
Biomed Opt Express. 2020 Oct 8;11(11):6168-6180. doi: 10.1364/BOE.395474. eCollection 2020 Nov 1.
2
Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
Acc Chem Res. 2016 Nov 15;49(11):2614-2624. doi: 10.1021/acs.accounts.6b00348. Epub 2016 Sep 23.
3
Charge-based detection of small molecules by plasmonic-based electrochemical impedance microscopy.
Anal Chem. 2013 Jul 16;85(14):6682-7. doi: 10.1021/ac400475z. Epub 2013 Jul 3.
4
Plasmonic-Based Electrochemical Impedance Imaging of Electrical Activities in Single Cells.
Angew Chem Int Ed Engl. 2017 Jul 17;56(30):8855-8859. doi: 10.1002/anie.201703033. Epub 2017 May 15.
5
Development of SPR Imaging-Impedance Sensor for Multi-Parametric Living Cell Analysis.
Sensors (Basel). 2019 May 3;19(9):2067. doi: 10.3390/s19092067.
6
Plasmonic Imaging of Electrochemical Impedance.
Annu Rev Anal Chem (Palo Alto Calif). 2017 Jun 12;10(1):183-200. doi: 10.1146/annurev-anchem-061516-045150. Epub 2017 Mar 6.
7
Colorimetric surface plasmon resonance imaging (SPRI) biosensor array based on polarization orientation.
Biosens Bioelectron. 2013 Sep 15;47:545-52. doi: 10.1016/j.bios.2013.02.040. Epub 2013 Mar 16.
8
Electrically Excited Plasmonic Nanoruler for Biomolecule Detection.
Nano Lett. 2016 Sep 14;16(9):5728-36. doi: 10.1021/acs.nanolett.6b02414. Epub 2016 Aug 29.
9
Surface plasmon resonance sensing: from purified biomolecules to intact cells.
Anal Bioanal Chem. 2018 Jul;410(17):3943-3951. doi: 10.1007/s00216-018-1008-8. Epub 2018 Apr 12.

引用本文的文献

1
Label-free and dynamic monitoring of cell evolutions using wavelength-multiplexing surface plasmon resonance holographic microscopy.
Biomed Opt Express. 2023 Apr 17;14(5):2028-2039. doi: 10.1364/BOE.486467. eCollection 2023 May 1.
2
Analysis of the surface plasmon resonance interferometric imaging performance of scanning confocal surface plasmon microscopy.
Biomed Opt Express. 2021 Dec 24;13(1):485-501. doi: 10.1364/BOE.448085. eCollection 2022 Jan 1.

本文引用的文献

1
Sensitive detection of voltage transients using differential intensity surface plasmon resonance system.
Opt Express. 2017 Dec 11;25(25):31552-31567. doi: 10.1364/OE.25.031552.
2
The Role of Anion Adsorption in the Effect of Electrode Potential on Surface Plasmon Resonance Response.
Chemphyschem. 2017 Jun 20;18(12):1552-1560. doi: 10.1002/cphc.201601288. Epub 2017 May 3.
3
Label-Free Imaging of Histamine Mediated G Protein-Coupled Receptors Activation in Live Cells.
Anal Chem. 2016 Dec 6;88(23):11498-11503. doi: 10.1021/acs.analchem.6b02677. Epub 2016 Nov 15.
5
A review of impedance measurements of whole cells.
Biosens Bioelectron. 2016 Mar 15;77:824-36. doi: 10.1016/j.bios.2015.10.027. Epub 2015 Oct 22.
6
Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells.
Angew Chem Int Ed Engl. 2015 Nov 9;54(46):13576-80. doi: 10.1002/anie.201505991. Epub 2015 Sep 4.
10
Label-free live-cell imaging with confocal Raman microscopy.
Biophys J. 2012 Jan 18;102(2):360-8. doi: 10.1016/j.bpj.2011.12.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验