Suppr超能文献

组织光学特性与机器学习相结合能够估计关节软骨的组成和功能完整性。

Tissue optical properties combined with machine learning enables estimation of articular cartilage composition and functional integrity.

作者信息

Kafian-Attari Iman, Nippolainen Ervin, Semenov Dmitry, Hauta-Kasari Markku, Töyräs Juha, Afara Isaac O

机构信息

University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, Kuopio 70120, Finland.

University of Eastern Finland, School of Computing, Lämsikatu 15, Joensuu 80110, Finland.

出版信息

Biomed Opt Express. 2020 Oct 19;11(11):6480-6494. doi: 10.1364/BOE.402929. eCollection 2020 Nov 1.

Abstract

Absorption and reduced scattering coefficients ( ) of biological tissues have shown significant potential in biomedical applications. Thus, they are effective parameters for the characterization of tissue integrity and provide vital information on the health of biological tissues. This study investigates the potential of optical properties ( ) for estimating articular cartilage composition and biomechanical properties using multivariate and machine learning techniques. The results suggest that μ could optimally estimate cartilage proteoglycan content in the superficial zone, in addition to its equilibrium modulus. While could effectively estimate the proteoglycan content of the middle and deep zones in addition to the instantaneous and dynamic moduli of articular cartilage.

摘要

生物组织的吸收系数和约化散射系数( )在生物医学应用中已显示出巨大潜力。因此,它们是表征组织完整性的有效参数,并提供有关生物组织健康状况的重要信息。本研究使用多变量和机器学习技术,探讨光学特性( )在估计关节软骨组成和生物力学特性方面的潜力。结果表明,除了平衡模量外,μ还能最佳地估计表层区域的软骨蛋白聚糖含量。而 除了能有效估计关节软骨的瞬时和动态模量外,还能有效估计中层和深层区域的蛋白聚糖含量。

相似文献

1
Tissue optical properties combined with machine learning enables estimation of articular cartilage composition and functional integrity.
Biomed Opt Express. 2020 Oct 19;11(11):6480-6494. doi: 10.1364/BOE.402929. eCollection 2020 Nov 1.
3
Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model.
Am J Sports Med. 2005 Nov;33(11):1647-53. doi: 10.1177/0363546505275487. Epub 2005 Aug 10.
4
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage.
Osteoarthritis Cartilage. 2009 Dec;17(12):1628-38. doi: 10.1016/j.joca.2009.07.002. Epub 2009 Jul 8.
5
Optical and mechanical determination of Poisson's ratio of adult bovine humeral articular cartilage.
J Biomech. 1997 Mar;30(3):235-41. doi: 10.1016/s0021-9290(96)00133-9.
8
Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage.
J Biomech. 2007;40(1):182-90. doi: 10.1016/j.jbiomech.2005.11.002. Epub 2006 Jan 4.
9
Biomechanical and structural characteristics of canine femoral and tibial cartilage.
J Biomed Mater Res. 1999;48(2):99-107. doi: 10.1002/(sici)1097-4636(1999)48:2<99::aid-jbm1>3.0.co;2-n.

引用本文的文献

1
The Relationship Between the Optical Properties of Articular Cartilage and the Biomechanical Parameters of the Tissue.
J Biophotonics. 2025 Apr;18(4):e202400460. doi: 10.1002/jbio.202400460. Epub 2025 Jan 31.
2
Relationship between depth-wise refractive index and biomechanical properties of human articular cartilage.
J Biomed Opt. 2024 Sep;29(9):095003. doi: 10.1117/1.JBO.29.9.095003. Epub 2024 Sep 20.
5
Visible and Near-Infrared Spectroscopy Enables Differentiation of Normal and Early Osteoarthritic Human Knee Joint Articular Cartilage.
Ann Biomed Eng. 2023 Oct;51(10):2245-2257. doi: 10.1007/s10439-023-03261-7. Epub 2023 Jun 18.
6
Raman Spectroscopy and Machine Learning Enables Estimation of Articular Cartilage Structural, Compositional, and Functional Properties.
Ann Biomed Eng. 2023 Oct;51(10):2301-2312. doi: 10.1007/s10439-023-03271-5. Epub 2023 Jun 16.
7
Diffuse reflectance spectroscopy of the cartilage tissue in the fourth optical window.
Biomed Opt Express. 2023 Mar 10;14(4):1509-1521. doi: 10.1364/BOE.483135. eCollection 2023 Apr 1.
8
Articular cartilage optical properties in the near-infrared (NIR) spectral range vary with depth and tissue integrity.
Biomed Opt Express. 2021 Sep 7;12(10):6066-6080. doi: 10.1364/BOE.430053. eCollection 2021 Oct 1.
9
Machine learning estimation of tissue optical properties.
Sci Rep. 2021 Mar 22;11(1):6561. doi: 10.1038/s41598-021-85994-w.
10
Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.
Molecules. 2021 Feb 9;26(4):922. doi: 10.3390/molecules26040922.

本文引用的文献

1
Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy.
Cell Mol Bioeng. 2020 Mar 9;13(3):219-228. doi: 10.1007/s12195-020-00612-5. eCollection 2020 Jun.
2
Near Infrared Spectroscopy Enables Differentiation of Mechanically and Enzymatically Induced Cartilage Injuries.
Ann Biomed Eng. 2020 Sep;48(9):2343-2353. doi: 10.1007/s10439-020-02506-z. Epub 2020 Apr 16.
3
Near-infrared spectroscopy enables quantitative evaluation of human cartilage biomechanical properties during arthroscopy.
Osteoarthritis Cartilage. 2019 Aug;27(8):1235-1243. doi: 10.1016/j.joca.2019.04.008. Epub 2019 Apr 23.
5
Elastic, Viscoelastic and Fibril-Reinforced Poroelastic Material Properties of Healthy and Osteoarthritic Human Tibial Cartilage.
Ann Biomed Eng. 2019 Apr;47(4):953-966. doi: 10.1007/s10439-019-02213-4. Epub 2019 Jan 28.
6
The effect of different preconditioning protocols on repeatability of bovine ACL stress-relaxation response in tension.
J Mech Behav Biomed Mater. 2019 Feb;90:493-501. doi: 10.1016/j.jmbbm.2018.10.041. Epub 2018 Nov 2.
8
Short wavelength infrared optical windows for evaluation of benign and malignant tissues.
J Biomed Opt. 2017 Apr 1;22(4):45002. doi: 10.1117/1.JBO.22.4.045002.
9
The Urgent Need for Evidence in Arthroscopic Meniscal Surgery.
Am J Sports Med. 2017 Mar;45(4):965-973. doi: 10.1177/0363546516650180. Epub 2016 Jul 21.
10
Using Raman spectroscopy to characterize biological materials.
Nat Protoc. 2016 Apr;11(4):664-87. doi: 10.1038/nprot.2016.036. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验