Suppr超能文献

深度分辨光遗传学中的光细胞相互作用。

Light-cell interactions in depth-resolved optogenetics.

作者信息

Johannsmeier Sonja, Wenzel Johannes, Torres-Mapa Maria L, Junge Sebastian, Sasse Philipp, Stockhausen Joshua D, Ripken Tammo, Heinemann Dag, Heisterkamp Alexander

机构信息

Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany.

Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany.

出版信息

Biomed Opt Express. 2020 Oct 19;11(11):6536-6550. doi: 10.1364/BOE.404388. eCollection 2020 Nov 1.

Abstract

Light as a tool in medical therapy and biological research has been studied extensively and its application is subject to continuous improvement. However, safe and efficient application of light-based methods in photomedicine or optogenetics requires knowledge about the optical properties of the target tissue as well as the response characteristics of the stimulated cells. Here, we used tissue phantoms and a heart-like light-sensitive cell line to investigate optogenetic stimulation through tissue layers. The input power necessary for successful stimulation could be described as a function of phantom thickness. A model of light transmission through the tissue phantoms gives insights into the expected stimulation efficiency. Cell-type specific effects are identified that result in deviations of the stimulation threshold from the modelled predictions. This study provides insights into the complex interplay between light, tissue and cells during deep-tissue optogenetics. It can serve as an orientation for safe implementation of light-based methods .

摘要

光作为医学治疗和生物学研究中的一种工具,已经得到了广泛的研究,其应用也在不断改进。然而,在光医学或光遗传学中安全有效地应用基于光的方法,需要了解目标组织的光学特性以及受刺激细胞的反应特性。在这里,我们使用组织模型和一种类似心脏的光敏细胞系来研究透过组织层的光遗传学刺激。成功刺激所需的输入功率可以描述为模型厚度的函数。通过组织模型的光传输模型可以深入了解预期的刺激效率。确定了细胞类型特异性效应,这些效应导致刺激阈值与模型预测值出现偏差。这项研究深入探讨了深部组织光遗传学过程中光、组织和细胞之间的复杂相互作用。它可以为基于光的方法的安全实施提供指导。

相似文献

1
Light-cell interactions in depth-resolved optogenetics.
Biomed Opt Express. 2020 Oct 19;11(11):6536-6550. doi: 10.1364/BOE.404388. eCollection 2020 Nov 1.
2
Light distribution and thermal effects in the rat brain under optogenetic stimulation.
J Biophotonics. 2016 Jun;9(6):576-85. doi: 10.1002/jbio.201500106. Epub 2015 Jul 20.
4
Extraction of optical properties and prediction of light distribution in rat brain tissue.
J Biomed Opt. 2014;19(7):75001. doi: 10.1117/1.JBO.19.7.075001.
5
All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.
J Physiol. 2017 Mar 1;595(5):1465-1477. doi: 10.1113/JP273116. Epub 2016 Dec 14.
6
Towards miniaturized closed-loop optogenetic stimulation devices.
J Neural Eng. 2018 Apr;15(2):021002. doi: 10.1088/1741-2552/aa7d62.
7
Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics.
Cell Rep. 2015 Jul 21;12(3):525-34. doi: 10.1016/j.celrep.2015.06.036. Epub 2015 Jul 9.
8
Optogenetic Tools for Confined Stimulation in Deep Brain Structures.
Methods Mol Biol. 2016;1408:267-79. doi: 10.1007/978-1-4939-3512-3_18.
9
Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.
Science. 2018 Feb 9;359(6376):679-684. doi: 10.1126/science.aaq1144.
10
A Simulation Study of Light Propagation in the Spinal Cord for Optogenetic Surface Stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6872-6875. doi: 10.1109/EMBC.2019.8856874.

本文引用的文献

1
Multisite microLED optrode array for neural interfacing.
Neurophotonics. 2019 Jul;6(3):035010. doi: 10.1117/1.NPh.6.3.035010. Epub 2019 Aug 28.
2
Coherent backscattering of light by an anisotropic biological network.
Interface Focus. 2019 Feb 6;9(1):20180050. doi: 10.1098/rsfs.2018.0050. Epub 2018 Dec 14.
3
Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine.
Materials (Basel). 2018 Jul 25;11(8):1283. doi: 10.3390/ma11081283.
4
Transparent, conformable, active multielectrode array using organic electrochemical transistors.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10554-10559. doi: 10.1073/pnas.1703886114. Epub 2017 Sep 18.
5
Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods.
Lasers Med Sci. 2017 Nov;32(8):1909-1918. doi: 10.1007/s10103-017-2317-4. Epub 2017 Sep 12.
6
Synchronization of excitable cardiac cultures of different origin.
Biomater Sci. 2017 Aug 22;5(9):1777-1785. doi: 10.1039/c7bm00171a.
8
Optical phantoms with adjustable subdiffusive scattering parameters.
J Biomed Opt. 2015 Oct;20(10):105008. doi: 10.1117/1.JBO.20.10.105008.
9
Optogenetics: 10 years of microbial opsins in neuroscience.
Nat Neurosci. 2015 Sep;18(9):1213-25. doi: 10.1038/nn.4091.
10
Optogenetics for in vivo cardiac pacing and resynchronization therapies.
Nat Biotechnol. 2015 Jul;33(7):750-4. doi: 10.1038/nbt.3268. Epub 2015 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验