Suppr超能文献

分析全局正则化反向散射定量超声。

Analytic Global Regularized Backscatter Quantitative Ultrasound.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1605-1617. doi: 10.1109/TUFFC.2020.3042942. Epub 2021 Apr 26.

Abstract

Although a variety of techniques have been developed to reduce the appearance of B-mode speckle, quantitative ultrasound (QUS) aims at extracting the hidden properties of the tissue. Herein, we propose two novel techniques to accurately and precisely estimate two important QUS parameters, namely, the average attenuation coefficient and the backscatter coefficient. Both the techniques optimize a cost function that incorporates data and continuity constraint terms, which we call AnaLytical Global rEgularized BackscatteR quAntitative ultrasound (ALGEBRA). We propose two versions of ALGEBRA, namely, 1-D- and 2-D-ALGEBRA. In 1-D-ALGEBRA, the regularized cost function is formulated in the axial direction, and the QUS parameters are calculated for one line of radio frequency (RF) echo data. In 2-D-ALGEBRA, the regularized cost function is formulated for the entire image, and the QUS parameters throughout the image are estimated simultaneously. This simultaneous optimization allows 2-D-ALGEBRA to "see" all the data before estimating the QUS parameters. In both the methods, we efficiently optimize the cost functions by casting it as a sparse linear system of equations. As a result of this efficient optimization, 1-D-ALGEBRA and 2-D-ALGEBRA are, respectively, 600 and 300 times faster than optimization using the dynamic programming (DP) method previously proposed by our group. In addition, the proposed technique has fewer input parameters that require manual tuning. Our results demonstrate that the proposed ALGEBRA methods substantially outperform least-square and DP methods in estimating the QUS parameters in phantom experiments.

摘要

虽然已经开发出多种技术来减少 B 模式散斑的出现,但定量超声(QUS)旨在提取组织的隐藏特性。在此,我们提出了两种新颖的技术,可准确,精确地估计两个重要的 QUS 参数,即平均衰减系数和反向散射系数。这两种技术都优化了一个成本函数,该函数结合了数据和连续性约束项,我们称之为分析全局正则化反向散射定量超声(ALGEBRA)。我们提出了两种版本的 ALGEBRA,即 1-D-ALGEBRA 和 2-D-ALGEBRA。在 1-D-ALGEBRA 中,正则化成本函数在轴向方向上进行了公式化,并且针对射频(RF)回波数据的一行计算了 QUS 参数。在 2-D-ALGEBRA 中,针对整个图像进行了正则化成本函数的公式化,并且同时估计了整个图像中的 QUS 参数。这种同时优化使 2-D-ALGEBRA 可以在估计 QUS 参数之前“看到”所有数据。在这两种方法中,我们通过将其转换为稀疏线性方程组来有效地优化成本函数。由于这种有效的优化,1-D-ALGEBRA 和 2-D-ALGEBRA 分别比我们小组先前提出的动态规划(DP)方法的优化快 600 倍和 300 倍。此外,该技术的输入参数较少,需要手动调整。我们的结果表明,在所提出的 ALGEBRA 方法中,在幻影实验中估计 QUS 参数时,大大优于最小二乘和 DP 方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8756/8214362/4cbe39267cad/nihms-1697675-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验