Suppr超能文献

具有时间一致性的心脏MRI序列心肌分割用于冠状动脉疾病诊断

Myocardial Segmentation of Cardiac MRI Sequences With Temporal Consistency for Coronary Artery Disease Diagnosis.

作者信息

Chen Yutian, Xie Wen, Zhang Jiawei, Qiu Hailong, Zeng Dewen, Shi Yiyu, Yuan Haiyun, Zhuang Jian, Jia Qianjun, Zhang Yanchun, Dong Yuhao, Huang Meiping, Xu Xiaowei

机构信息

Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangzhou, China.

出版信息

Front Cardiovasc Med. 2022 Feb 25;9:804442. doi: 10.3389/fcvm.2022.804442. eCollection 2022.

Abstract

Coronary artery disease (CAD) is the most common cause of death globally, and its diagnosis is usually based on manual myocardial (MYO) segmentation of MRI sequences. As manual segmentation is tedious, time-consuming, and with low replicability, automatic MYO segmentation using machine learning techniques has been widely explored recently. However, almost all the existing methods treat the input MRI sequences independently, which fails to capture the temporal information between sequences, e.g., the shape and location information of the myocardium in sequences along time. In this article, we propose a MYO segmentation framework for sequence of cardiac MRI (CMR) scanning images of the left ventricular (LV) cavity, right ventricular (RV) cavity, and myocardium. Specifically, we propose to combine conventional neural networks and recurrent neural networks to incorporate temporal information between sequences to ensure temporal consistency. We evaluated our framework on the automated cardiac diagnosis challenge (ACDC) dataset. The experiment results demonstrate that our framework can improve the segmentation accuracy by up to 2% in the Dice coefficient.

摘要

冠状动脉疾病(CAD)是全球最常见的死亡原因,其诊断通常基于磁共振成像(MRI)序列的手动心肌(MYO)分割。由于手动分割繁琐、耗时且可重复性低,近年来利用机器学习技术进行自动MYO分割受到了广泛探索。然而,几乎所有现有方法都独立处理输入的MRI序列,无法捕捉序列之间的时间信息,例如心肌随时间变化的形状和位置信息。在本文中,我们提出了一种针对左心室(LV)腔、右心室(RV)腔和心肌的心脏MRI(CMR)扫描图像序列的MYO分割框架。具体而言,我们建议将传统神经网络和循环神经网络相结合,以纳入序列之间的时间信息,确保时间一致性。我们在自动心脏诊断挑战(ACDC)数据集上对我们的框架进行了评估。实验结果表明,我们的框架在Dice系数方面可将分割准确率提高多达2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e69/8914019/3570bb05b1ff/fcvm-09-804442-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验