Graziadei Helton, Lijoi Antonio, Lopes Hedibert F, Marques F Paulo C, Prünster Igor
Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo 05508-090, Brazil.
Department of Decision Sciences and BIDSA, Bocconi University, via Röntgen 1, 20136 Milano, Italy.
Entropy (Basel). 2020 Jan 6;22(1):69. doi: 10.3390/e22010069.
We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the INAR() model with innovation rates clustered according to a Pitman-Yor process placed at the top of the model hierarchy. Our main finding is a graphical criterion that guides the specification of the hyperparameters of the Pitman-Yor process base measure. We show how the discount and concentration parameters interact with the chosen base measure to yield a gain in terms of the robustness of the inferential results. The forecasting performance of the model is exemplified in the analysis of a time series of worldwide earthquake events, for which the new model outperforms the original INAR() model.
我们在INAR()模型的半参数分层扩展中研究先验敏感性问题,其中创新率根据置于模型层次结构顶部的皮特曼 - 约尔过程进行聚类。我们的主要发现是一个图形准则,它指导皮特曼 - 约尔过程基础测度超参数的设定。我们展示了折扣参数和集中度参数如何与所选基础测度相互作用,从而在推断结果的稳健性方面产生增益。在对全球地震事件时间序列的分析中例证了该模型的预测性能,对于此时间序列,新模型优于原始的INAR()模型。