Suppr超能文献

半参数整数值时间序列模型中的先验敏感性分析

Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model.

作者信息

Graziadei Helton, Lijoi Antonio, Lopes Hedibert F, Marques F Paulo C, Prünster Igor

机构信息

Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo 05508-090, Brazil.

Department of Decision Sciences and BIDSA, Bocconi University, via Röntgen 1, 20136 Milano, Italy.

出版信息

Entropy (Basel). 2020 Jan 6;22(1):69. doi: 10.3390/e22010069.

Abstract

We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the INAR() model with innovation rates clustered according to a Pitman-Yor process placed at the top of the model hierarchy. Our main finding is a graphical criterion that guides the specification of the hyperparameters of the Pitman-Yor process base measure. We show how the discount and concentration parameters interact with the chosen base measure to yield a gain in terms of the robustness of the inferential results. The forecasting performance of the model is exemplified in the analysis of a time series of worldwide earthquake events, for which the new model outperforms the original INAR() model.

摘要

我们在INAR()模型的半参数分层扩展中研究先验敏感性问题,其中创新率根据置于模型层次结构顶部的皮特曼 - 约尔过程进行聚类。我们的主要发现是一个图形准则,它指导皮特曼 - 约尔过程基础测度超参数的设定。我们展示了折扣参数和集中度参数如何与所选基础测度相互作用,从而在推断结果的稳健性方面产生增益。在对全球地震事件时间序列的分析中例证了该模型的预测性能,对于此时间序列,新模型优于原始的INAR()模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8552/7516501/f0aaf7a079b2/entropy-22-00069-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验