Moraffah Bahman, Papandreou-Suppappola Antonia
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA.
Sensors (Basel). 2022 Jan 5;22(1):388. doi: 10.3390/s22010388.
The paper considers the problem of tracking an unknown and time-varying number of unlabeled moving objects using multiple unordered measurements with unknown association to the objects. The proposed tracking approach integrates Bayesian nonparametric modeling with Markov chain Monte Carlo methods to estimate the parameters of each object when present in the tracking scene. In particular, we adopt the dependent Dirichlet process (DDP) to learn the multiple object state prior by exploiting inherent dynamic dependencies in the state transition using the dynamic clustering property of the DDP. Using the DDP to draw the mixing measures, Dirichlet process mixtures are used to learn and assign each measurement to its associated object identity. The Bayesian posterior to estimate the target trajectories is efficiently implemented using a Gibbs sampler inference scheme. A second tracking approach is proposed that replaces the DDP with the dependent Pitman-Yor process in order to allow for a higher flexibility in clustering. The improved tracking performance of the new approaches is demonstrated by comparison to the generalized labeled multi-Bernoulli filter.
本文考虑了使用多个无序测量值来跟踪未知且随时间变化数量的未标记移动对象的问题,这些测量值与对象的关联未知。所提出的跟踪方法将贝叶斯非参数建模与马尔可夫链蒙特卡罗方法相结合,以在跟踪场景中存在每个对象时估计其参数。具体而言,我们采用依赖狄利克雷过程(DDP),通过利用DDP的动态聚类特性,在状态转移中利用固有的动态依赖性来学习多个对象状态先验。使用DDP绘制混合测度,狄利克雷过程混合用于学习并将每个测量值分配给其相关的对象标识。使用吉布斯采样器推理方案有效地实现了用于估计目标轨迹的贝叶斯后验。提出了第二种跟踪方法,该方法用依赖皮特曼 - 约尔过程代替DDP,以便在聚类方面具有更高的灵活性。通过与广义标记多伯努利滤波器进行比较,证明了新方法改进的跟踪性能。