Suppr超能文献

利用子目标图提高基于幅度的欺骗性路径规划的可扩展性

Improving the Scalability of the Magnitude-Based Deceptive Path-Planning Using Subgoal Graphs.

作者信息

Xu Kai, Hu Yue, Zeng Yunxiu, Yin Quanjun, Yang Mei

机构信息

College of Systems Engineering, National University of Defense Technology, Changsha 410000, China.

出版信息

Entropy (Basel). 2020 Jan 30;22(2):162. doi: 10.3390/e22020162.

Abstract

Deceptive path-planning is the task of finding a path so as to minimize the probability of an observer (or a defender) identifying the observed agent's final goal before the goal has been reached. Magnitude-based deceptive path-planning takes advantage of the quantified deceptive values upon each grid or position to generate paths that are deceptive. Existing methods using optimization techniques cannot satisfy the time constraints when facing with the large-scale terrain, as its computation time grows exponentially with the size of road maps or networks. In this work, building on recent developments in the optimal path planner, the paper proposes a hybrid solution between map scaling and hierarchical abstractions. By leading the path deception information down into a general purpose but highly-efficient path-planning formulation, the paper substantially speeds up the task upon large scale terrains with an admissible loss of deception.

摘要

欺骗性路径规划是指在目标达成之前,寻找一条路径,以尽量降低观察者(或防御者)识别被观察智能体最终目标的概率。基于量级的欺骗性路径规划利用每个网格或位置上的量化欺骗值来生成具有欺骗性的路径。现有的使用优化技术的方法在面对大规模地形时无法满足时间限制,因为其计算时间会随着路线图或网络规模呈指数级增长。在这项工作中,基于最优路径规划器的最新进展,本文提出了一种地图缩放和分层抽象之间的混合解决方案。通过将路径欺骗信息引入到一个通用但高效的路径规划公式中,本文在欺骗性可接受损失的情况下,大幅加快了大规模地形上的任务处理速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1d/7516580/aec0c3c1bdd0/entropy-22-00162-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验