Carpio Ana, Cebrián Elena
Departamento de Matemática Aplicada, Universidad Complutense, 28040 Madrid, Spain.
Departamento de Matemáticas y Computación, Universidad de Burgos, 09001 Burgos, Spain.
Entropy (Basel). 2020 Feb 6;22(2):188. doi: 10.3390/e22020188.
The dynamics of cellular aggregates is driven by the interplay of mechanochemical processes and cellular activity. Although deterministic models may capture mechanical features, local chemical fluctuations trigger random cell responses, which determine the overall evolution. Incorporating stochastic cellular behavior in macroscopic models of biological media is a challenging task. Herein, we propose hybrid models for bacterial biofilm growth, which couple a two phase solid/fluid mixture description of mechanical and chemical fields with a dynamic energy budget-based cellular automata treatment of bacterial activity. Thin film and plate approximations for the relevant interfaces allow us to obtain numerical solutions exhibiting behaviors observed in experiments, such as accelerated spread due to water intake from the environment, wrinkle formation, undulated contour development, and the appearance of inhomogeneous distributions of differentiated bacteria performing varied tasks.
细胞聚集体的动力学是由机械化学过程和细胞活性的相互作用驱动的。尽管确定性模型可以捕捉机械特征,但局部化学波动会引发随机的细胞反应,从而决定整体的演化。将随机细胞行为纳入生物介质的宏观模型是一项具有挑战性的任务。在此,我们提出了用于细菌生物膜生长的混合模型,该模型将机械和化学场的两相固/液混合物描述与基于动态能量收支的细菌活性细胞自动机处理相结合。对相关界面的薄膜和平板近似使我们能够获得展现出实验中观察到的行为的数值解,例如由于从环境中摄取水分导致的加速扩散、皱纹形成、起伏轮廓发展以及执行不同任务的分化细菌的不均匀分布的出现。