Suppr超能文献

基于密度幂散度的复合似然框架下的模型选择

Model Selection in a Composite Likelihood Framework Based on Density Power Divergence.

作者信息

Castilla Elena, Martín Nirian, Pardo Leandro, Zografos Konstantinos

机构信息

Interdisciplinary Mathematics Institute and Department of Statistics and O.R. I, Complutense University of Madrid, 28040 Madrid, Spain.

Interdisciplinary Mathematics Institute and Department of Financial and Actuarial Economics & Statistics, Complutense University of Madrid, 28003 Madrid, Spain.

出版信息

Entropy (Basel). 2020 Feb 27;22(3):270. doi: 10.3390/e22030270.

Abstract

This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter α . After introducing such a criterion, some asymptotic properties are established. We present a simulation study and two numerical examples in order to point out the robustness properties of the introduced model selection criterion.

摘要

本文提出了一种基于密度幂散度测度的复合似然框架下的模型选择准则,以及复合最小密度幂散度估计量,该估计量依赖于一个调整参数α。引入这样一个准则后,建立了一些渐近性质。我们进行了一项模拟研究和两个数值例子,以指出所引入的模型选择准则的稳健性。

相似文献

5
On the 'optimal' density power divergence tuning parameter.关于“最优”密度幂散度调整参数。
J Appl Stat. 2020 Mar 13;48(3):536-556. doi: 10.1080/02664763.2020.1736524. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验