Suppr超能文献

平均法可能不是联邦学习中聚合参数的最佳方式。

Averaging Is Probably Not the Optimum Way of Aggregating Parameters in Federated Learning.

作者信息

Xiao Peng, Cheng Samuel, Stankovic Vladimir, Vukobratovic Dejan

机构信息

Department of Computer Science and Technology, Tongji University, Shanghai 201804, China.

The School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK 73019, USA.

出版信息

Entropy (Basel). 2020 Mar 11;22(3):314. doi: 10.3390/e22030314.

Abstract

Federated learning is a decentralized topology of deep learning, that trains a shared model through data distributed among each client (like mobile phones, wearable devices), in order to ensure data privacy by avoiding raw data exposed in data center (server). After each client computes a new model parameter by stochastic gradient descent (SGD) based on their own local data, these locally-computed parameters will be aggregated to generate an updated global model. Many current state-of-the-art studies aggregate different client-computed parameters by averaging them, but none theoretically explains why averaging parameters is a good approach. In this paper, we treat each client computed parameter as a random vector because of the stochastic properties of SGD, and estimate mutual information between two client computed parameters at different training phases using two methods in two learning tasks. The results confirm the correlation between different clients and show an increasing trend of mutual information with training iteration. However, when we further compute the distance between client computed parameters, we find that parameters are getting more correlated while not getting closer. This phenomenon suggests that averaging parameters may not be the optimum way of aggregating trained parameters.

摘要

联邦学习是深度学习的一种去中心化拓扑结构,它通过分布在每个客户端(如手机、可穿戴设备)的数据来训练一个共享模型,以避免原始数据暴露在数据中心(服务器)从而确保数据隐私。每个客户端基于自身的本地数据通过随机梯度下降(SGD)计算出一个新的模型参数后,这些本地计算的参数将被聚合以生成一个更新的全局模型。当前许多前沿研究通过对不同客户端计算的参数求平均来进行聚合,但从理论上没有解释为什么平均参数是一种好方法。在本文中,由于随机梯度下降的随机性,我们将每个客户端计算的参数视为一个随机向量,并在两个学习任务中使用两种方法估计不同训练阶段两个客户端计算的参数之间的互信息。结果证实了不同客户端之间的相关性,并显示出互信息随训练迭代呈增加趋势。然而,当我们进一步计算客户端计算的参数之间的距离时,我们发现参数之间的相关性越来越高,但并没有变得更接近。这种现象表明平均参数可能不是聚合训练参数的最佳方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31e/7516771/e24d442188ed/entropy-22-00314-g001.jpg

相似文献

1
Averaging Is Probably Not the Optimum Way of Aggregating Parameters in Federated Learning.
Entropy (Basel). 2020 Mar 11;22(3):314. doi: 10.3390/e22030314.
2
Decentralized Federated Averaging.
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4289-4301. doi: 10.1109/TPAMI.2022.3196503. Epub 2023 Mar 7.
3
Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and Temporally Weighted Aggregation.
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):4229-4238. doi: 10.1109/TNNLS.2019.2953131. Epub 2019 Dec 30.
4
Temporal Weighted Averaging for Asynchronous Federated Intrusion Detection Systems.
Comput Intell Neurosci. 2021 Dec 17;2021:5844728. doi: 10.1155/2021/5844728. eCollection 2021.
6
Customized Federated Learning for Multi-Source Decentralized Medical Image Classification.
IEEE J Biomed Health Inform. 2022 Nov;26(11):5596-5607. doi: 10.1109/JBHI.2022.3198440. Epub 2022 Nov 10.
7
Research on medical data security sharing scheme based on homomorphic encryption.
Math Biosci Eng. 2023 Jan;20(2):2261-2279. doi: 10.3934/mbe.2023106. Epub 2022 Nov 17.
8
FedTP: Federated Learning by Transformer Personalization.
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):13426-13440. doi: 10.1109/TNNLS.2023.3269062. Epub 2024 Oct 7.
9
Federated learning with hyper-network-a case study on whole slide image analysis.
Sci Rep. 2023 Jan 31;13(1):1724. doi: 10.1038/s41598-023-28974-6.
10
Federated Noisy Client Learning.
IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):1799-1812. doi: 10.1109/TNNLS.2023.3336050. Epub 2025 Jan 7.

引用本文的文献

3
Probabilistic Predictions with Federated Learning.
Entropy (Basel). 2020 Dec 30;23(1):41. doi: 10.3390/e23010041.
4
Individualised Responsible Artificial Intelligence for Home-Based Rehabilitation.
Sensors (Basel). 2020 Dec 22;21(1):2. doi: 10.3390/s21010002.
5
FedMed: A Federated Learning Framework for Language Modeling.
Sensors (Basel). 2020 Jul 21;20(14):4048. doi: 10.3390/s20144048.

本文引用的文献

1
2
Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data.
IEEE Trans Neural Netw Learn Syst. 2020 Sep;31(9):3400-3413. doi: 10.1109/TNNLS.2019.2944481. Epub 2019 Nov 1.
3
Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.
Healthc Inform Res. 2017 Jan;23(1):4-15. doi: 10.4258/hir.2017.23.1.4. Epub 2017 Jan 31.
4
Mutual information between discrete and continuous data sets.
PLoS One. 2014 Feb 19;9(2):e87357. doi: 10.1371/journal.pone.0087357. eCollection 2014.
5
Estimating mutual information.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066138. doi: 10.1103/PhysRevE.69.066138. Epub 2004 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验