Suppr超能文献

基于居家康复的个体化负责任人工智能

Individualised Responsible Artificial Intelligence for Home-Based Rehabilitation.

机构信息

Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.

出版信息

Sensors (Basel). 2020 Dec 22;21(1):2. doi: 10.3390/s21010002.

Abstract

Socioeconomic reasons post-COVID-19 demand unsupervised home-based rehabilitation and, specifically, artificial ambient intelligence with individualisation to support engagement and motivation. Artificial intelligence must also comply with accountability, responsibility, and transparency (ART) requirements for wider acceptability. This paper presents such a patient-centric individualised home-based rehabilitation support system. To this end, the Timed Up and Go (TUG) and Five Time Sit To Stand (FTSTS) tests evaluate daily living activity performance in the presence or development of comorbidities. We present a method for generating synthetic datasets complementing experimental observations and mitigating bias. We present an incremental hybrid machine learning algorithm combining ensemble learning and hybrid stacking using extreme gradient boosted decision trees and -nearest neighbours to meet individualisation, interpretability, and ART design requirements while maintaining low computation footprint. The model reaches up to 100% accuracy for both FTSTS and TUG in predicting associated patient medical condition, and 100% or 83.13%, respectively, in predicting area of difficulty in the segments of the test. Our results show an improvement of 5% and 15% for FTSTS and TUG tests, respectively, over previous approaches that use intrusive means of monitoring such as cameras.

摘要

新冠疫情后,社会经济因素要求提供无需监督的家庭康复服务,具体来说,需要使用具备个性化功能的人工智能来支持参与度和积极性。人工智能还必须符合问责制、责任和透明度 (ART) 要求,以提高其可接受性。本文提出了这样一种以患者为中心的个性化家庭康复支持系统。为此,采用计时起立行走 (TUG) 和五次坐立站起 (FTSTS) 测试来评估日常生活活动表现,同时存在或发展共病情况。我们提出了一种生成合成数据集的方法,用于补充实验观察结果并减轻偏差。我们提出了一种增量式混合机器学习算法,结合了集成学习和混合堆叠,使用极端梯度提升决策树和 -最近邻来满足个性化、可解释性和 ART 设计要求,同时保持低计算足迹。该模型在预测相关患者病情方面,FTSTS 和 TUG 的准确率高达 100%,在预测测试各部分困难区域方面,准确率分别高达 100%或 83.13%。我们的结果表明,与使用摄像头等侵入性监测手段的先前方法相比,FTSTS 和 TUG 测试分别提高了 5%和 15%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c90/7792599/24792c804a50/sensors-21-00002-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验