Suppr超能文献

使用最大熵模型进行土地覆盖分类:我们能否信赖用于估计分类准确率的模型质量指标?

Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy?

作者信息

Morales Narkis S, Fernández Ignacio C

机构信息

Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago 8340589, Chile.

出版信息

Entropy (Basel). 2020 Mar 17;22(3):342. doi: 10.3390/e22030342.

Abstract

MaxEnt is a popular maximum entropy-based algorithm originally developed for modelling species distribution, but increasingly used for land-cover classification. In this article, we used MaxEnt as a single-class land-cover classification and explored if recommended procedures for generating high-quality species distribution models also apply for generating high-accuracy land-cover classification. We used remote sensing imagery and randomly selected ground-true points for four types of land covers (built, grass, deciduous, evergreen) to generate 1980 classification maps using MaxEnt. We calculated different accuracy discrimination and quality model metrics to determine if these metrics were suitable proxies for estimating the accuracy of land-cover classification outcomes. Correlation analysis between model quality metrics showed consistent patterns for the relationships between metrics, but not for all land-covers. Relationship between model quality metrics and land-cover classification accuracy were land-cover-dependent. While for built cover there was no consistent patterns of correlations for any quality metrics; for grass, evergreen and deciduous, there was a consistent association between quality metrics and classification accuracy. We recommend evaluating the accuracy of land-cover classification results by using proper discrimination accuracy coefficients (e.g., Kappa, Overall Accuracy), and not placing all the confidence in model's quality metrics as a reliable indicator of land-cover classification results.

摘要

最大熵模型(MaxEnt)是一种基于最大熵的流行算法,最初用于物种分布建模,但越来越多地用于土地覆盖分类。在本文中,我们将MaxEnt用作单类土地覆盖分类方法,并探讨用于生成高质量物种分布模型的推荐程序是否也适用于生成高精度的土地覆盖分类。我们使用遥感影像,并为四种土地覆盖类型(建筑用地、草地、落叶林、常绿林)随机选择地面真值点,利用MaxEnt生成了1980年的分类地图。我们计算了不同的准确性判别和质量模型指标,以确定这些指标是否适合作为估计土地覆盖分类结果准确性的代理指标。模型质量指标之间的相关性分析显示了指标之间关系的一致模式,但并非所有土地覆盖类型都是如此。模型质量指标与土地覆盖分类准确性之间的关系取决于土地覆盖类型。对于建筑用地,任何质量指标都没有一致的相关模式;对于草地、常绿林和落叶林,质量指标与分类准确性之间存在一致的关联。我们建议通过使用适当的判别准确性系数(如卡帕系数、总体准确率)来评估土地覆盖分类结果的准确性,而不应完全依赖模型的质量指标作为土地覆盖分类结果的可靠指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eb8/7516803/48d3576f998c/entropy-22-00342-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验