Sigtermans David
ASML, De Run 6501, 5504 DR Veldhoven, The Netherlands.
Entropy (Basel). 2020 Apr 9;22(4):426. doi: 10.3390/e22040426.
We propose a tensor based approach to infer causal structures from time series. An information theoretical analysis of () shows that results from transmission of information over a set of communication channels. Tensors are the mathematical equivalents of these multichannel causal channels. The total effect of subsequent transmissions, i.e., the total effect of a cascade, can now be expressed in terms of the tensors of these subsequent transmissions using tensor multiplication. With this formalism, differences in the underlying structures can be detected that are otherwise undetectable using TE or mutual information. Additionally, using a system comprising three variables, we prove that bivariate analysis suffices to infer the structure, that is, bivariate analysis suffices to differentiate between direct and indirect associations. Some results translate to TE. For example, a () is proven to exist for transfer entropy.
我们提出一种基于张量的方法,用于从时间序列中推断因果结构。对()的信息理论分析表明,()源于通过一组通信信道的信息传输。张量是这些多通道因果信道的数学等价物。后续传输的总效应,即级联的总效应,现在可以使用张量乘法,根据这些后续传输的张量来表示。利用这种形式体系,可以检测到潜在结构中的差异,而这些差异使用传递熵(TE)或互信息是无法检测到的。此外,通过使用一个包含三个变量的系统,我们证明二元分析足以推断结构,也就是说,二元分析足以区分直接关联和间接关联。一些结果可以转化为传递熵。例如,已证明传递熵存在一个()。