Suppr超能文献

迈向基于时间序列的观察性因果关系框架:当香农遇见图灵时。

Towards a Framework for Observational Causality from Time Series: When Shannon Meets Turing.

作者信息

Sigtermans David

机构信息

ASML, De Run 6501, 5504 DR Veldhoven, The Netherlands.

出版信息

Entropy (Basel). 2020 Apr 9;22(4):426. doi: 10.3390/e22040426.

Abstract

We propose a tensor based approach to infer causal structures from time series. An information theoretical analysis of () shows that results from transmission of information over a set of communication channels. Tensors are the mathematical equivalents of these multichannel causal channels. The total effect of subsequent transmissions, i.e., the total effect of a cascade, can now be expressed in terms of the tensors of these subsequent transmissions using tensor multiplication. With this formalism, differences in the underlying structures can be detected that are otherwise undetectable using TE or mutual information. Additionally, using a system comprising three variables, we prove that bivariate analysis suffices to infer the structure, that is, bivariate analysis suffices to differentiate between direct and indirect associations. Some results translate to TE. For example, a () is proven to exist for transfer entropy.

摘要

我们提出一种基于张量的方法,用于从时间序列中推断因果结构。对()的信息理论分析表明,()源于通过一组通信信道的信息传输。张量是这些多通道因果信道的数学等价物。后续传输的总效应,即级联的总效应,现在可以使用张量乘法,根据这些后续传输的张量来表示。利用这种形式体系,可以检测到潜在结构中的差异,而这些差异使用传递熵(TE)或互信息是无法检测到的。此外,通过使用一个包含三个变量的系统,我们证明二元分析足以推断结构,也就是说,二元分析足以区分直接关联和间接关联。一些结果可以转化为传递熵。例如,已证明传递熵存在一个()。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e83/7516903/2c0440615777/entropy-22-00426-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验