Suppr超能文献

估计大神经群体中互信息的局限性。

Limitations to Estimating Mutual Information in Large Neural Populations.

作者信息

Mölter Jan, Goodhill Geoffrey J

机构信息

Queensland Brain Institute & School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4072, Australia.

出版信息

Entropy (Basel). 2020 Apr 24;22(4):490. doi: 10.3390/e22040490.

Abstract

Information theory provides a powerful framework to analyse the representation of sensory stimuli in neural population activity. However, estimating the quantities involved such as entropy and mutual information from finite samples is notoriously hard and any direct estimate is known to be heavily biased. This is especially true when considering large neural populations. We study a simple model of sensory processing and show through a combinatorial argument that, with high probability, for large neural populations any finite number of samples of neural activity in response to a set of stimuli is mutually distinct. As a consequence, the mutual information when estimated directly from empirical histograms will be equal to the stimulus entropy. Importantly, this is the case irrespective of the precise relation between stimulus and neural activity and corresponds to a maximal bias. This argument is general and applies to any application of information theory, where the state space is large and one relies on empirical histograms. Overall, this work highlights the need for alternative approaches for an information theoretic analysis when dealing with large neural populations.

摘要

信息论为分析神经群体活动中感觉刺激的表征提供了一个强大的框架。然而,从有限样本中估计诸如熵和互信息等相关量非常困难,而且任何直接估计都存在严重偏差。在考虑大型神经群体时尤其如此。我们研究了一个简单的感觉处理模型,并通过组合论证表明,对于大型神经群体,响应一组刺激的神经活动的任何有限数量样本极有可能是相互不同的。因此,直接从经验直方图估计的互信息将等于刺激熵。重要的是,无论刺激与神经活动之间的确切关系如何,都是这种情况,并且对应于最大偏差。这个论证是通用的,适用于信息论的任何应用,其中状态空间很大且依赖于经验直方图。总体而言,这项工作凸显了在处理大型神经群体时进行信息理论分析需要采用替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ad/7516973/692a6abd45d1/entropy-22-00490-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验