O'Donnell Cian, Gonçalves J Tiago, Whiteley Nick, Portera-Cailliau Carlos, Sejnowski Terrence J
Department of Computer Science, University of Bristol, Bristol BS81UB. U.K., and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A.
Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A., and Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, U.S.A.
Neural Comput. 2017 Jan;29(1):50-93. doi: 10.1162/NECO_a_00910. Epub 2016 Nov 21.
Our understanding of neural population coding has been limited by a lack of analysis methods to characterize spiking data from large populations. The biggest challenge comes from the fact that the number of possible network activity patterns scales exponentially with the number of neurons recorded ([Formula: see text]). Here we introduce a new statistical method for characterizing neural population activity that requires semi-independent fitting of only as many parameters as the square of the number of neurons, requiring drastically smaller data sets and minimal computation time. The model works by matching the population rate (the number of neurons synchronously active) and the probability that each individual neuron fires given the population rate. We found that this model can accurately fit synthetic data from up to 1000 neurons. We also found that the model could rapidly decode visual stimuli from neural population data from macaque primary visual cortex about 65 ms after stimulus onset. Finally, we used the model to estimate the entropy of neural population activity in developing mouse somatosensory cortex and, surprisingly, found that it first increases, and then decreases during development. This statistical model opens new options for interrogating neural population data and can bolster the use of modern large-scale in vivo Ca[Formula: see text] and voltage imaging tools.
我们对神经群体编码的理解一直受到缺乏分析方法的限制,这些方法用于表征来自大量神经元群体的尖峰数据。最大的挑战源于这样一个事实,即可能的网络活动模式数量与记录的神经元数量呈指数级增长([公式:见原文])。在这里,我们引入了一种新的统计方法来表征神经群体活动,该方法仅需对与神经元数量平方相同数量的参数进行半独立拟合,所需数据集大幅减小,计算时间也最短。该模型通过匹配群体发放率(同步活动的神经元数量)以及在给定群体发放率的情况下每个单个神经元发放的概率来工作。我们发现该模型能够准确拟合来自多达1000个神经元的合成数据。我们还发现,该模型能够在刺激开始后约65毫秒从猕猴初级视觉皮层的神经群体数据中快速解码视觉刺激。最后,我们使用该模型估计发育中小鼠体感皮层神经群体活动的熵,令人惊讶的是,我们发现其在发育过程中先增加,然后减少。这种统计模型为研究神经群体数据开辟了新的途径,并可促进现代大规模体内钙[公式:见原文]和电压成像工具的应用。