Suppr超能文献

群体追踪模型:一种用于神经群体数据的简单、可扩展的统计模型。

The Population Tracking Model: A Simple, Scalable Statistical Model for Neural Population Data.

作者信息

O'Donnell Cian, Gonçalves J Tiago, Whiteley Nick, Portera-Cailliau Carlos, Sejnowski Terrence J

机构信息

Department of Computer Science, University of Bristol, Bristol BS81UB. U.K., and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A.

Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A., and Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, U.S.A.

出版信息

Neural Comput. 2017 Jan;29(1):50-93. doi: 10.1162/NECO_a_00910. Epub 2016 Nov 21.

Abstract

Our understanding of neural population coding has been limited by a lack of analysis methods to characterize spiking data from large populations. The biggest challenge comes from the fact that the number of possible network activity patterns scales exponentially with the number of neurons recorded ([Formula: see text]). Here we introduce a new statistical method for characterizing neural population activity that requires semi-independent fitting of only as many parameters as the square of the number of neurons, requiring drastically smaller data sets and minimal computation time. The model works by matching the population rate (the number of neurons synchronously active) and the probability that each individual neuron fires given the population rate. We found that this model can accurately fit synthetic data from up to 1000 neurons. We also found that the model could rapidly decode visual stimuli from neural population data from macaque primary visual cortex about 65 ms after stimulus onset. Finally, we used the model to estimate the entropy of neural population activity in developing mouse somatosensory cortex and, surprisingly, found that it first increases, and then decreases during development. This statistical model opens new options for interrogating neural population data and can bolster the use of modern large-scale in vivo Ca[Formula: see text] and voltage imaging tools.

摘要

我们对神经群体编码的理解一直受到缺乏分析方法的限制,这些方法用于表征来自大量神经元群体的尖峰数据。最大的挑战源于这样一个事实,即可能的网络活动模式数量与记录的神经元数量呈指数级增长([公式:见原文])。在这里,我们引入了一种新的统计方法来表征神经群体活动,该方法仅需对与神经元数量平方相同数量的参数进行半独立拟合,所需数据集大幅减小,计算时间也最短。该模型通过匹配群体发放率(同步活动的神经元数量)以及在给定群体发放率的情况下每个单个神经元发放的概率来工作。我们发现该模型能够准确拟合来自多达1000个神经元的合成数据。我们还发现,该模型能够在刺激开始后约65毫秒从猕猴初级视觉皮层的神经群体数据中快速解码视觉刺激。最后,我们使用该模型估计发育中小鼠体感皮层神经群体活动的熵,令人惊讶的是,我们发现其在发育过程中先增加,然后减少。这种统计模型为研究神经群体数据开辟了新的途径,并可促进现代大规模体内钙[公式:见原文]和电压成像工具的应用。

相似文献

1
The Population Tracking Model: A Simple, Scalable Statistical Model for Neural Population Data.
Neural Comput. 2017 Jan;29(1):50-93. doi: 10.1162/NECO_a_00910. Epub 2016 Nov 21.
2
Exact computation of the maximum-entropy potential of spiking neural-network models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052117. doi: 10.1103/PhysRevE.89.052117. Epub 2014 May 12.
3
Adjusted regularization of cortical covariance.
J Comput Neurosci. 2018 Oct;45(2):83-101. doi: 10.1007/s10827-018-0692-x. Epub 2018 Sep 6.
4
Neural correlates of single-vessel haemodynamic responses in vivo.
Nature. 2016 Jun 16;534(7607):378-82. doi: 10.1038/nature17965. Epub 2016 May 25.
5
Generating spike trains with specified correlation coefficients.
Neural Comput. 2009 Feb;21(2):397-423. doi: 10.1162/neco.2008.02-08-713.
6
Spatiotemporal elements of macaque v1 receptive fields.
Neuron. 2005 Jun 16;46(6):945-56. doi: 10.1016/j.neuron.2005.05.021.
7
The Ising decoder: reading out the activity of large neural ensembles.
J Comput Neurosci. 2012 Feb;32(1):101-18. doi: 10.1007/s10827-011-0342-z. Epub 2011 Jun 11.
9
Formal and attribute-specific information in primary visual cortex.
J Neurophysiol. 2001 Jan;85(1):305-18. doi: 10.1152/jn.2001.85.1.305.

引用本文的文献

1
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships.
PLoS Comput Biol. 2022 Jan 28;18(1):e1009799. doi: 10.1371/journal.pcbi.1009799. eCollection 2022 Jan.
2
Limitations to Estimating Mutual Information in Large Neural Populations.
Entropy (Basel). 2020 Apr 24;22(4):490. doi: 10.3390/e22040490.
3
Learning moment closure in reaction-diffusion systems with spatial dynamic Boltzmann distributions.
Phys Rev E. 2019 Jun;99(6-1):063315. doi: 10.1103/PhysRevE.99.063315.
5
Probabilistic models for neural populations that naturally capture global coupling and criticality.
PLoS Comput Biol. 2017 Sep 19;13(9):e1005763. doi: 10.1371/journal.pcbi.1005763. eCollection 2017 Sep.
6
Tactile Defensiveness and Impaired Adaptation of Neuronal Activity in the Knock-Out Mouse Model of Autism.
J Neurosci. 2017 Jul 5;37(27):6475-6487. doi: 10.1523/JNEUROSCI.0651-17.2017. Epub 2017 Jun 12.

本文引用的文献

1
A Tractable Method for Describing Complex Couplings between Neurons and Population Rate.
eNeuro. 2016 Aug 18;3(4). doi: 10.1523/ENEURO.0160-15.2016. eCollection 2016 Jul-Aug.
2
Inferring Cortical Variability from Local Field Potentials.
J Neurosci. 2016 Apr 6;36(14):4121-35. doi: 10.1523/JNEUROSCI.2502-15.2016.
3
Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian Inference.
PLoS Comput Biol. 2016 Feb 19;12(2):e1004736. doi: 10.1371/journal.pcbi.1004736. eCollection 2016 Feb.
4
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data.
Neuron. 2016 Jan 20;89(2):285-99. doi: 10.1016/j.neuron.2015.11.037. Epub 2016 Jan 7.
5
Coordinated Neuronal Activity Enhances Corticocortical Communication.
Neuron. 2015 Aug 19;87(4):827-39. doi: 10.1016/j.neuron.2015.07.026.
6
Diverse coupling of neurons to populations in sensory cortex.
Nature. 2015 May 28;521(7553):511-515. doi: 10.1038/nature14273. Epub 2015 Apr 6.
7
Cortical state determines global variability and correlations in visual cortex.
J Neurosci. 2015 Jan 7;35(1):170-8. doi: 10.1523/JNEUROSCI.4994-13.2015.
8
Dimensionality reduction for large-scale neural recordings.
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.
9
Modeling higher-order correlations within cortical microcolumns.
PLoS Comput Biol. 2014 Jul 3;10(7):e1003684. doi: 10.1371/journal.pcbi.1003684. eCollection 2014 Jul.
10
The log-dynamic brain: how skewed distributions affect network operations.
Nat Rev Neurosci. 2014 Apr;15(4):264-78. doi: 10.1038/nrn3687. Epub 2014 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验