Suppr超能文献

基于融合非线性特征和团队协作识别策略的外周生理信号情绪状态识别

Emotional State Recognition from Peripheral Physiological Signals Using Fused Nonlinear Features and Team-Collaboration Identification Strategy.

作者信息

Pan Lizheng, Yin Zeming, She Shigang, Song Aiguo

机构信息

School of Mechanical Engineering, Changzhou University, Changzhou 213164, China.

Remote Measurement and Control Key Lab of Jiangsu Province, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

出版信息

Entropy (Basel). 2020 Apr 30;22(5):511. doi: 10.3390/e22050511.

Abstract

Emotion recognition realizing human inner perception has a very important application prospect in human-computer interaction. In order to improve the accuracy of emotion recognition, a novel method combining fused nonlinear features and team-collaboration identification strategy was proposed for emotion recognition using physiological signals. Four nonlinear features, namely approximate entropy (ApEn), sample entropy (SaEn), fuzzy entropy (FuEn) and wavelet packet entropy (WpEn) are employed to reflect emotional states deeply with each type of physiological signal. Then the features of different physiological signals are fused to represent the emotional states from multiple perspectives. Each classifier has its own advantages and disadvantages. In order to make full use of the advantages of other classifiers and avoid the limitation of single classifier, the team-collaboration model is built and the team-collaboration decision-making mechanism is designed according to the proposed team-collaboration identification strategy which is based on the fusion of support vector machine (SVM), decision tree (DT) and extreme learning machine (ELM). Through analysis, SVM is selected as the main classifier with DT and ELM as auxiliary classifiers. According to the designed decision-making mechanism, the proposed team-collaboration identification strategy can effectively employ different classification methods to make decision based on the characteristics of the samples through SVM classification. For samples which are easy to be identified by SVM, SVM directly determines the identification results, whereas SVM-DT-ELM collaboratively determines the identification results, which can effectively utilize the characteristics of each classifier and improve the classification accuracy. The effectiveness and universality of the proposed method are verified by Augsburg database and database for emotion analysis using physiological (DEAP) signals. The experimental results uniformly indicated that the proposed method combining fused nonlinear features and team-collaboration identification strategy presents better performance than the existing methods.

摘要

实现人类内心感知的情感识别在人机交互中具有非常重要的应用前景。为了提高情感识别的准确率,提出了一种将融合非线性特征与团队协作识别策略相结合的新颖方法,用于基于生理信号的情感识别。采用四种非线性特征,即近似熵(ApEn)、样本熵(SaEn)、模糊熵(FuEn)和小波包熵(WpEn),以深入反映每种生理信号的情感状态。然后融合不同生理信号的特征,从多个角度表征情感状态。每个分类器都有其优缺点。为了充分利用其他分类器的优点并避免单一分类器的局限性,构建了团队协作模型,并根据基于支持向量机(SVM)、决策树(DT)和极限学习机(ELM)融合的团队协作识别策略设计了团队协作决策机制。通过分析,选择SVM作为主分类器,DT和ELM作为辅助分类器。根据设计的决策机制,所提出的团队协作识别策略可以通过SVM分类,有效地根据样本特征采用不同的分类方法进行决策。对于易于被SVM识别的样本,SVM直接确定识别结果,而SVM-DT-ELM协同确定识别结果,这可以有效利用每个分类器的特征并提高分类准确率。通过奥格斯堡数据库和基于生理信号的情感分析数据库(DEAP)验证了所提方法的有效性和通用性。实验结果一致表明,所提出的融合非线性特征与团队协作识别策略的方法比现有方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b7/7517002/5ffb90067b60/entropy-22-00511-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验