Suppr超能文献

神经网络中的熵动力学、重整化群与哈密顿-雅可比-贝尔曼方程。

Entropic Dynamics in Neural Networks, the Renormalization Group and the Hamilton-Jacobi-Bellman Equation.

作者信息

Caticha Nestor

机构信息

Instituto de Física, Universidade de São Paulo, São Paulo, SP, 05315-970 CEP, Brazil.

出版信息

Entropy (Basel). 2020 May 23;22(5):587. doi: 10.3390/e22050587.

Abstract

We study the dynamics of information processing in the continuum depth limit of deep feed-forward Neural Networks (NN) and find that it can be described in language similar to the Renormalization Group (RG). The association of concepts to patterns by a NN is analogous to the identification of the few variables that characterize the thermodynamic state obtained by the RG from microstates. To see this, we encode the information about the weights of a NN in a Maxent family of distributions. The location hyper-parameters represent the weights estimates. Bayesian learning of a new example determine new constraints on the generators of the family, yielding a new probability distribution which can be seen as an entropic dynamics of learning, yielding a learning dynamics where the hyper-parameters change along the gradient of the evidence. For a feed-forward architecture the evidence can be written recursively from the evidence up to the previous layer convoluted with an aggregation kernel. The continuum limit leads to a diffusion-like PDE analogous to Wilson's RG but with an aggregation kernel that depends on the weights of the NN, different from those that integrate out ultraviolet degrees of freedom. This can be recast in the language of dynamical programming with an associated Hamilton-Jacobi-Bellman equation for the evidence, where the control is the set of weights of the neural network.

摘要

我们研究了深度前馈神经网络(NN)在连续深度极限下的信息处理动力学,发现其可以用类似于重整化群(RG)的语言来描述。神经网络将概念与模式的关联类似于从微观状态通过重整化群获得的表征热力学状态的少数变量的识别。为了说明这一点,我们在最大熵分布族中对神经网络权重的信息进行编码。位置超参数代表权重估计。对新示例的贝叶斯学习确定了该分布族生成器的新约束,产生一个新的概率分布,这可以看作是一种学习的熵动力学,产生一种学习动力学,其中超参数沿着证据梯度变化。对于前馈架构,证据可以从证据开始递归地写出来,与前一层证据卷积并与一个聚合核进行卷积。连续极限导致一个类似于威尔逊重整化群的扩散型偏微分方程,但具有一个依赖于神经网络权重的聚合核,这与那些整合掉紫外自由度的核不同。这可以用动态规划的语言重新表述,为证据关联一个哈密顿 - 雅可比 - 贝尔曼方程,其中控制量是神经网络的权重集。

相似文献

8
Boundary Control of 2-D Burgers' PDE: An Adaptive Dynamic Programming Approach.二维伯格斯偏微分方程的边界控制:一种自适应动态规划方法。
IEEE Trans Neural Netw Learn Syst. 2018 Aug;29(8):3669-3681. doi: 10.1109/TNNLS.2017.2736786. Epub 2017 Aug 29.
10
Deep convolutional neural network and IoT technology for healthcare.用于医疗保健的深度卷积神经网络和物联网技术。
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.

本文引用的文献

2
Discovering Physical Concepts with Neural Networks.用神经网络发现物理概念。
Phys Rev Lett. 2020 Jan 10;124(1):010508. doi: 10.1103/PhysRevLett.124.010508.
3
Neural Network Renormalization Group.神经网络重整化群。
Phys Rev Lett. 2018 Dec 28;121(26):260601. doi: 10.1103/PhysRevLett.121.260601.
5
Inference from aging information.从衰老信息中进行推断。
IEEE Trans Neural Netw. 2010 Jun;21(6):1015-20. doi: 10.1109/TNN.2010.2046422. Epub 2010 Apr 22.
6
Gradient descent learning in and out of equilibrium.平衡态内外的梯度下降学习
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 1):061905. doi: 10.1103/PhysRevE.63.061905. Epub 2001 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验