Masser Robin, Khodja Abdellah, Scheunert Mathias, Schwalbe Karsten, Fischer Andreas, Paul Raphael, Hoffmann Karl Heinz
Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
Entropy (Basel). 2020 Jun 23;22(6):700. doi: 10.3390/e22060700.
The Stirling engine is one of the most promising devices for the recovery of waste heat. Its power output can be optimized by several means, in particular by an optimized piston motion. Here, we investigate its potential performance improvements in the presence of dissipative processes. In order to ensure the possibility of a technical implementation and the simplicity of the optimization, we restrict the possible piston movements to a parametrized class of smooth piston motions. In this theoretical study the engine model is based on endoreversible thermodynamics, which allows us to incorporate non-equilibrium heat and mass transfer as well as the friction of the piston motion. The regenerator of the Stirling engine is modeled as ideal. An investigation of the impact of the individual loss mechanisms on the resulting optimized motion is carried out for a wide range of parameter values. We find that an optimization within our restricted piston motion class leads to a power gain of about 50% on average.
斯特林发动机是回收废热最有前景的装置之一。其功率输出可通过多种方式进行优化,特别是通过优化活塞运动。在此,我们研究在存在耗散过程的情况下其潜在的性能提升。为了确保技术实施的可能性和优化的简易性,我们将可能的活塞运动限制在一类参数化的平滑活塞运动中。在这项理论研究中,发动机模型基于内可逆热力学,这使我们能够纳入非平衡热质传递以及活塞运动的摩擦力。斯特林发动机的回热器被建模为理想的。针对广泛的参数值,研究了各个损失机制对最终优化运动的影响。我们发现,在我们受限的活塞运动类别内进行优化,平均可使功率增益约50%。