Suppr超能文献

倾向于模式匹配的策略是改进基于样本熵的复杂性估计的可行方法吗?

Are Strategies Favoring Pattern Matching a Viable Way to Improve Complexity Estimation Based on Sample Entropy?

作者信息

Porta Alberto, Valencia José Fernando, Cairo Beatrice, Bari Vlasta, De Maria Beatrice, Gelpi Francesca, Barbic Franca, Furlan Raffaello

机构信息

Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.

Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.

出版信息

Entropy (Basel). 2020 Jun 30;22(7):724. doi: 10.3390/e22070724.

Abstract

It has been suggested that a viable strategy to improve complexity estimation based on the assessment of pattern similarity is to increase the pattern matching rate without enlarging the series length. We tested this hypothesis over short simulations of nonlinear deterministic and linear stochastic dynamics affected by various noise amounts. Several transformations featuring a different ability to increase the pattern matching rate were tested and compared to the usual strategy adopted in sample entropy (SampEn) computation. The approaches were applied to evaluate the complexity of short-term cardiac and vascular controls from the beat-to-beat variability of heart period (HP) and systolic arterial pressure (SAP) in 12 Parkinson disease patients and 12 age- and gender-matched healthy subjects at supine resting and during head-up tilt. Over simulations, the strategies estimated a larger complexity over nonlinear deterministic signals and a greater regularity over linear stochastic series or deterministic dynamics importantly contaminated by noise. Over short HP and SAP series the techniques did not produce any practical advantage, with an unvaried ability to discriminate groups and experimental conditions compared to the traditional SampEn. Procedures designed to artificially increase the number of matches are of no methodological and practical value when applied to assess complexity indexes.

摘要

有人提出,基于模式相似性评估来改进复杂性估计的一个可行策略是在不增加序列长度的情况下提高模式匹配率。我们在受不同噪声量影响的非线性确定性和线性随机动力学的短模拟中测试了这一假设。测试了几种具有不同提高模式匹配率能力的变换,并将其与样本熵(SampEn)计算中采用的常规策略进行比较。这些方法被用于评估12名帕金森病患者和12名年龄及性别匹配的健康受试者在仰卧休息和头高位倾斜期间,根据心动周期(HP)和收缩期动脉压(SAP)的逐搏变异性得出的短期心脏和血管控制的复杂性。在模拟中,这些策略在非线性确定性信号上估计出更大的复杂性,而在受噪声严重污染的线性随机序列或确定性动力学上估计出更高的规律性。在短HP和SAP序列上,与传统的SampEn相比,这些技术没有产生任何实际优势,区分组和实验条件的能力没有变化。当应用于评估复杂性指标时,旨在人为增加匹配数量的程序没有方法学和实际价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/938a/7517267/9bd18cad7d70/entropy-22-00724-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验