Suppr超能文献

SynSigGAN:用于合成生物医学信号生成的生成对抗网络。

SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation.

作者信息

Hazra Debapriya, Byun Yung-Cheol

机构信息

Department of Computer Engineering, Jeju National University, Jeju 63243, Korea.

出版信息

Biology (Basel). 2020 Dec 3;9(12):441. doi: 10.3390/biology9120441.

Abstract

Automating medical diagnosis and training medical students with real-life situations requires the accumulation of large dataset variants covering all aspects of a patient's condition. For preventing the misuse of patient's private information, datasets are not always publicly available. There is a need to generate synthetic data that can be trained for the advancement of public healthcare without intruding on patient's confidentiality. Currently, rules for generating synthetic data are predefined and they require expert intervention, which limits the types and amount of synthetic data. In this paper, we propose a novel generative adversarial networks (GAN) model, named SynSigGAN, for automating the generation of any kind of synthetic biomedical signals. We have used bidirectional grid long short-term memory for the generator network and convolutional neural network for the discriminator network of the GAN model. Our model can be applied in order to create new biomedical synthetic signals while using a small size of the original signal dataset. We have experimented with our model for generating synthetic signals for four kinds of biomedical signals (electrocardiogram (ECG), electroencephalogram (EEG), electromyography (EMG), photoplethysmography (PPG)). The performance of our model is superior wheen compared to other traditional models and GAN models, as depicted by the evaluation metric. Synthetic biomedical signals generated by our approach have been tested while using other models that could classify each signal significantly with high accuracy.

摘要

实现医学诊断自动化并让医学生在实际情况中接受培训,需要积累涵盖患者病情各个方面的大量数据集变体。为防止患者私人信息被滥用,数据集并非总是公开可用。因此,需要生成合成数据,以便在不侵犯患者隐私的情况下用于公共医疗保健的发展。目前,生成合成数据的规则是预先定义的,且需要专家干预,这限制了合成数据的类型和数量。在本文中,我们提出了一种新颖的生成对抗网络(GAN)模型,名为SynSigGAN,用于自动生成任何类型的合成生物医学信号。我们在GAN模型的生成器网络中使用了双向网格长短期记忆,在判别器网络中使用了卷积神经网络。我们的模型可以在使用小尺寸原始信号数据集的情况下创建新的生物医学合成信号。我们已经对模型进行了实验,用于生成四种生物医学信号(心电图(ECG)、脑电图(EEG)、肌电图(EMG)、光电容积脉搏波描记法(PPG))的合成信号。如评估指标所示,与其他传统模型和GAN模型相比,我们模型的性能更优。我们通过该方法生成的合成生物医学信号已使用其他模型进行测试,这些模型能够以高精度对每个信号进行显著分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e85a/7761837/db05d5ca26b6/biology-09-00441-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验