Suppr超能文献

基于集成学习方法提高拉曼测量的信噪比。

Improving signal-to-noise ratio of Raman measurements based on ensemble learning approach.

作者信息

Jia Yufei, Gao Yuning, Xu Wenbin, Wang Yunxin, Yan Zejun, Chen Keren, Chen Shuo

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.

National Key Laboratory of Scattering and Radiation, Beijing, 110854, China.

出版信息

Anal Bioanal Chem. 2025 Jan;417(3):641-652. doi: 10.1007/s00216-024-05676-0. Epub 2024 Nov 30.

Abstract

Raman spectroscopy is an extensively explored vibrational spectroscopic technique to analyze the biochemical composition and molecular structure of samples, which is often assumed to be non-destructive when carefully using proper laser power and exposure time. However, the inherently weak Raman signal and concurrent fluorescence interference often lead to Raman measurements with a low signal-to-noise ratio (SNR), especially for biological samples. Great efforts have been made to develop experimental approaches and/or numerical algorithms to improve the SNR. In this study, we proposed an ensemble learning approach to recover and denoise Raman measurements with a low SNR. The proposed ensemble learning approach was evaluated on 986 pairs of Raman measurements, each pair of which consists of a low SNR Raman spectrum and a high SNR reference Raman spectrum from the exact same fungal sample but uses 200 times the integration time. Compared with conventional methods, the Raman measurements recovered by the proposed ensemble learning approach are more identical to high SNR reference Raman measurements, with an average RMSE and MAE of only 1.337 × 10 and 1.066 × 10, respectively; thus, the proposed ensemble learning approach is expected to be a powerful tool for numerically improving the SNR of Raman measurements and further benefits rapid Raman acquisition from biological samples.

摘要

拉曼光谱是一种被广泛探索的振动光谱技术,用于分析样品的生化组成和分子结构。在小心使用适当的激光功率和曝光时间时,通常认为它是无损的。然而,拉曼信号固有的微弱以及同时存在的荧光干扰常常导致拉曼测量的信噪比(SNR)较低,尤其是对于生物样品。人们已经做出了巨大努力来开发实验方法和/或数值算法以提高信噪比。在本研究中,我们提出了一种集成学习方法来恢复和去噪低信噪比的拉曼测量结果。所提出的集成学习方法在986对拉曼测量数据上进行了评估,每一对数据都由一个低信噪比拉曼光谱和一个来自完全相同真菌样品但积分时间为其200倍的高信噪比参考拉曼光谱组成。与传统方法相比,通过所提出的集成学习方法恢复的拉曼测量结果与高信噪比参考拉曼测量结果更为相似,平均均方根误差(RMSE)和平均绝对误差(MAE)分别仅为1.337×10和1.066×10;因此,所提出的集成学习方法有望成为一种强大的工具,用于在数值上提高拉曼测量的信噪比,并进一步有利于从生物样品中快速获取拉曼光谱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验