Suppr超能文献

深度学习从心血管磁共振诊断心脏淀粉样变性。

Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance.

机构信息

Deep Health Unit, Fondazione Toscana Gabriele Monasterio, Pisa-Massa, Italy.

Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.

出版信息

J Cardiovasc Magn Reson. 2020 Dec 7;22(1):84. doi: 10.1186/s12968-020-00690-4.

Abstract

BACKGROUND

Cardiovascular magnetic resonance (CMR) is part of the diagnostic work-up for cardiac amyloidosis (CA). Deep learning (DL) is an application of artificial intelligence that may allow to automatically analyze CMR findings and establish the likelihood of CA.

METHODS

1.5 T CMR was performed in 206 subjects with suspected CA (n = 100, 49% with unexplained left ventricular (LV) hypertrophy; n = 106, 51% with blood dyscrasia and suspected light-chain amyloidosis). Patients were randomly assigned to the training (n = 134, 65%), validation (n = 30, 15%), and testing subgroups (n = 42, 20%). Short axis, 2-chamber, 4-chamber late gadolinium enhancement (LGE) images were evaluated by 3 networks (DL algorithms). The tags "amyloidosis present" or "absent" were attributed when the average probability of CA from the 3 networks was ≥ 50% or < 50%, respectively. The DL strategy was compared to a machine learning (ML) algorithm considering all manually extracted features (LV volumes, mass and function, LGE pattern, early blood-pool darkening, pericardial and pleural effusion, etc.), to reproduce exam reading by an experienced operator.

RESULTS

The DL strategy displayed good diagnostic accuracy (88%), with an area under the curve (AUC) of 0.982. The precision (positive predictive value), recall score (sensitivity), and F1 score (a measure of test accuracy) were 83%, 95%, and 89% respectively. A ML algorithm considering all CMR features had a similar diagnostic yield to DL strategy (AUC 0.952 vs. 0.982; p = 0.39).

CONCLUSIONS

A DL approach evaluating LGE acquisitions displayed a similar diagnostic performance for CA to a ML-based approach, which simulates CMR reading by experienced operators.

摘要

背景

心血管磁共振(CMR)是心脏淀粉样变性(CA)诊断的一部分。深度学习(DL)是人工智能的一种应用,它可以自动分析 CMR 结果并确定 CA 的可能性。

方法

对 206 例疑似 CA 患者(n=100,49%为不明原因左心室肥厚;n=106,51%为血液异常和疑似轻链淀粉样变性)进行 1.5T CMR。患者被随机分配到训练组(n=134,65%)、验证组(n=30,15%)和测试组(n=42,20%)。通过 3 个网络(DL 算法)评估短轴、2 腔、4 腔晚期钆增强(LGE)图像。当 3 个网络的 CA 平均概率≥50%或<50%时,分别赋予“淀粉样变性存在”或“不存在”的标签。DL 策略与考虑所有手动提取特征(LV 容积、质量和功能、LGE 模式、早期血池暗化、心包和胸腔积液等)的机器学习(ML)算法进行比较,以重现经验丰富的操作者的检查结果。

结果

DL 策略具有良好的诊断准确性(88%),曲线下面积(AUC)为 0.982。精度(阳性预测值)、召回率(敏感性)和 F1 评分(衡量测试准确性的指标)分别为 83%、95%和 89%。考虑所有 CMR 特征的 ML 算法与 DL 策略具有相似的诊断效果(AUC 0.952 与 0.982;p=0.39)。

结论

评估 LGE 采集的 DL 方法对 CA 的诊断性能与基于 ML 的方法相似,该方法模拟了经验丰富的操作者的 CMR 阅读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ec/7720569/02b984b597b0/12968_2020_690_Fig5_HTML.jpg

相似文献

1
Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2020 Dec 7;22(1):84. doi: 10.1186/s12968-020-00690-4.
3
Noncontrast Magnetic Resonance for the Diagnosis of Cardiac Amyloidosis.
JACC Cardiovasc Imaging. 2020 Jan;13(1 Pt 1):69-80. doi: 10.1016/j.jcmg.2019.03.026. Epub 2019 Jun 12.
4
Multiparametric Echocardiography Scores for the Diagnosis of Cardiac Amyloidosis.
JACC Cardiovasc Imaging. 2020 Apr;13(4):909-920. doi: 10.1016/j.jcmg.2019.10.011. Epub 2019 Dec 18.
5
Diffusion Tensor Cardiovascular Magnetic Resonance in Cardiac Amyloidosis.
Circ Cardiovasc Imaging. 2020 May;13(5):e009901. doi: 10.1161/CIRCIMAGING.119.009901. Epub 2020 May 15.
6
Native T1 Mapping, Extracellular Volume Mapping, and Late Gadolinium Enhancement in Cardiac Amyloidosis: A Meta-Analysis.
JACC Cardiovasc Imaging. 2020 Jun;13(6):1299-1310. doi: 10.1016/j.jcmg.2020.03.010.
10
Potential clinical relevance of cardiac magnetic resonance to diagnose cardiac light chain amyloidosis.
PLoS One. 2022 Jun 13;17(6):e0269807. doi: 10.1371/journal.pone.0269807. eCollection 2022.

引用本文的文献

1
Artificial Intelligence in Cardiovascular Imaging: Current Applications and New Horizons.
J Cardiovasc Echogr. 2025 Apr-Jun;35(2):97-107. doi: 10.4103/jcecho.jcecho_62_25. Epub 2025 Jul 30.
2
Transthyretin cardiac amyloidosis: advances and ambiguities.
Heart Fail Rev. 2025 Aug 29. doi: 10.1007/s10741-025-10552-9.
4
The Role of Artificial Intelligence in Cardiac Amyloidosis: A Focus on Diagnosis and Clinical Application.
J Cardiovasc Dev Dis. 2025 Jun 11;12(6):221. doi: 10.3390/jcdd12060221.
5
Novel three-dimensional ECG algorithm for reliable screening for cardiac amyloidosis.
ESC Heart Fail. 2025 Aug;12(4):2993-3002. doi: 10.1002/ehf2.15318. Epub 2025 May 4.
7
The Role of Artificial Intelligence in the Detection of Cardiac Amyloidosis: A Systematic Review.
Cureus. 2025 Feb 4;17(2):e78488. doi: 10.7759/cureus.78488. eCollection 2025 Feb.
9
Advancements and applications of artificial intelligence in cardiovascular imaging: a comprehensive review.
Eur Heart J Imaging Methods Pract. 2024 Dec 14;2(4):qyae136. doi: 10.1093/ehjimp/qyae136. eCollection 2024 Oct.
10
Leveraging a Vision Transformer Model to Improve Diagnostic Accuracy of Cardiac Amyloidosis With Cardiac Magnetic Resonance.
JACC Cardiovasc Imaging. 2025 Mar;18(3):278-290. doi: 10.1016/j.jcmg.2024.09.010. Epub 2024 Dec 4.

本文引用的文献

1
Magnetic Resonance to Diagnose Cardiac Amyloidosis: Is it Already Time to Discard Contrast Agents?
JACC Cardiovasc Imaging. 2020 May;13(5):1293-1294. doi: 10.1016/j.jcmg.2020.01.030.
2
Artificial intelligence for the diagnosis of heart failure.
NPJ Digit Med. 2020 Apr 8;3:54. doi: 10.1038/s41746-020-0261-3. eCollection 2020.
3
Image-Based Cardiac Diagnosis With Machine Learning: A Review.
Front Cardiovasc Med. 2020 Jan 24;7:1. doi: 10.3389/fcvm.2020.00001. eCollection 2020.
4
Multiparametric Echocardiography Scores for the Diagnosis of Cardiac Amyloidosis.
JACC Cardiovasc Imaging. 2020 Apr;13(4):909-920. doi: 10.1016/j.jcmg.2019.10.011. Epub 2019 Dec 18.
5
Machine learning in cardiovascular magnetic resonance: basic concepts and applications.
J Cardiovasc Magn Reson. 2019 Oct 7;21(1):61. doi: 10.1186/s12968-019-0575-y.
6
Artificial Intelligence Will Transform Cardiac Imaging-Opportunities and Challenges.
Front Cardiovasc Med. 2019 Sep 10;6:133. doi: 10.3389/fcvm.2019.00133. eCollection 2019.
7
A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis.
Circ Cardiovasc Imaging. 2019 Oct;12(10):e009214. doi: 10.1161/CIRCIMAGING.119.009214. Epub 2019 Sep 24.
8
Noncontrast Magnetic Resonance for the Diagnosis of Cardiac Amyloidosis.
JACC Cardiovasc Imaging. 2020 Jan;13(1 Pt 1):69-80. doi: 10.1016/j.jcmg.2019.03.026. Epub 2019 Jun 12.
9
Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2019 Mar 26;73(11):1317-1335. doi: 10.1016/j.jacc.2018.12.054.
10
Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study.
JACC Cardiovasc Imaging. 2018 Nov;11(11):1654-1663. doi: 10.1016/j.jcmg.2018.01.020. Epub 2018 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验