Deep Health Unit, Fondazione Toscana Gabriele Monasterio, Pisa-Massa, Italy.
Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
J Cardiovasc Magn Reson. 2020 Dec 7;22(1):84. doi: 10.1186/s12968-020-00690-4.
Cardiovascular magnetic resonance (CMR) is part of the diagnostic work-up for cardiac amyloidosis (CA). Deep learning (DL) is an application of artificial intelligence that may allow to automatically analyze CMR findings and establish the likelihood of CA.
1.5 T CMR was performed in 206 subjects with suspected CA (n = 100, 49% with unexplained left ventricular (LV) hypertrophy; n = 106, 51% with blood dyscrasia and suspected light-chain amyloidosis). Patients were randomly assigned to the training (n = 134, 65%), validation (n = 30, 15%), and testing subgroups (n = 42, 20%). Short axis, 2-chamber, 4-chamber late gadolinium enhancement (LGE) images were evaluated by 3 networks (DL algorithms). The tags "amyloidosis present" or "absent" were attributed when the average probability of CA from the 3 networks was ≥ 50% or < 50%, respectively. The DL strategy was compared to a machine learning (ML) algorithm considering all manually extracted features (LV volumes, mass and function, LGE pattern, early blood-pool darkening, pericardial and pleural effusion, etc.), to reproduce exam reading by an experienced operator.
The DL strategy displayed good diagnostic accuracy (88%), with an area under the curve (AUC) of 0.982. The precision (positive predictive value), recall score (sensitivity), and F1 score (a measure of test accuracy) were 83%, 95%, and 89% respectively. A ML algorithm considering all CMR features had a similar diagnostic yield to DL strategy (AUC 0.952 vs. 0.982; p = 0.39).
A DL approach evaluating LGE acquisitions displayed a similar diagnostic performance for CA to a ML-based approach, which simulates CMR reading by experienced operators.
心血管磁共振(CMR)是心脏淀粉样变性(CA)诊断的一部分。深度学习(DL)是人工智能的一种应用,它可以自动分析 CMR 结果并确定 CA 的可能性。
对 206 例疑似 CA 患者(n=100,49%为不明原因左心室肥厚;n=106,51%为血液异常和疑似轻链淀粉样变性)进行 1.5T CMR。患者被随机分配到训练组(n=134,65%)、验证组(n=30,15%)和测试组(n=42,20%)。通过 3 个网络(DL 算法)评估短轴、2 腔、4 腔晚期钆增强(LGE)图像。当 3 个网络的 CA 平均概率≥50%或<50%时,分别赋予“淀粉样变性存在”或“不存在”的标签。DL 策略与考虑所有手动提取特征(LV 容积、质量和功能、LGE 模式、早期血池暗化、心包和胸腔积液等)的机器学习(ML)算法进行比较,以重现经验丰富的操作者的检查结果。
DL 策略具有良好的诊断准确性(88%),曲线下面积(AUC)为 0.982。精度(阳性预测值)、召回率(敏感性)和 F1 评分(衡量测试准确性的指标)分别为 83%、95%和 89%。考虑所有 CMR 特征的 ML 算法与 DL 策略具有相似的诊断效果(AUC 0.952 与 0.982;p=0.39)。
评估 LGE 采集的 DL 方法对 CA 的诊断性能与基于 ML 的方法相似,该方法模拟了经验丰富的操作者的 CMR 阅读。