Suppr超能文献

高等植物中的蔗糖信号转导。

Sucrose signaling in higher plants.

机构信息

Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.

Department of Plant Bioscience, Pusan National University, Miryang, 50463, South Korea.

出版信息

Plant Sci. 2021 Jan;302:110703. doi: 10.1016/j.plantsci.2020.110703. Epub 2020 Oct 4.

Abstract

Sucrose controls various developmental and metabolic processes in plants. In this review, we evaluate whether sucrose could be a preferred signaling molecule that controls processes like carbohydrate metabolism, accumulation of storage proteins, sucrose transport, anthocyanin accumulation, and floral induction. We summarize putative sucrose-dependent signaling pathways. Sucrose, but not other sugars, stimulates the genes that encode ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase I, and UDP-glucose pyrophosphorylase in several species. The class-1 patatin promoter is induced under high sucrose conditions in potato (Solanum tuberosum). Exogenous sucrose reduces the loading of sucrose to the phloem by inhibiting the expression of the sucrose transporter and its protein activity in sugar beet (Beta vulgaris). Sucrose also influences a wide range of growth processes, including cell division, ribosome synthesis, cotyledon development, far-red light signaling, and tuber development. Floral induction is promoted by sucrose in several species. The molecular mechanisms by which sucrose functions as a signal are largely unknown. Sucrose enhances the expression of transcription factors such as AtWRKY20 and MYB75, which function upstream of the sucrose-responsive genes. Sucrose controls the expression of AtbZIP11 at the post-transcriptional level by the peptide encoded by uORF2. Sucrose levels affect translation of a group of mRNAs in Arabidopsis. Sucrose increases the activity of AGPase by posttranslational redox-modification. Sucrose interrupts the interaction between sucrose transporter SUT4 and cytochrome b5. In addition, the SNF-related protein kinase-1 appears to be involved in sucrose-dependent pathways by controlling sucrose synthase (SUS4) expression.

摘要

蔗糖控制着植物的各种发育和代谢过程。在这篇综述中,我们评估了蔗糖是否可以作为一种优选的信号分子,来控制碳水化合物代谢、储存蛋白积累、蔗糖转运、花色素苷积累和花诱导等过程。我们总结了假定的蔗糖依赖信号通路。蔗糖(而非其他糖)可刺激多种物种中编码 ADP-葡萄糖焦磷酸化酶(AGPase)、颗粒结合淀粉合成酶 I 和 UDP-葡萄糖焦磷酸化酶的基因。在马铃薯(Solanum tuberosum)中,高蔗糖条件下类-1 patatin 启动子被诱导。在糖甜菜(Beta vulgaris)中,蔗糖通过抑制蔗糖转运体及其蛋白活性的表达,减少蔗糖向韧皮部的装载。蔗糖还影响包括细胞分裂、核糖体合成、子叶发育、远红光信号和块茎发育在内的广泛的生长过程。在多个物种中,蔗糖促进花诱导。蔗糖作为信号分子的分子机制在很大程度上尚不清楚。蔗糖增强了转录因子如 AtWRKY20 和 MYB75 的表达,这些转录因子在上游的蔗糖响应基因中起作用。蔗糖通过 uORF2 编码的肽在转录后水平控制 AtbZIP11 的表达。蔗糖水平影响拟南芥中一组 mRNA 的翻译。蔗糖通过翻译后氧化还原修饰增加 AGPase 的活性。蔗糖中断了蔗糖转运体 SUT4 和细胞色素 b5 之间的相互作用。此外,SNF 相关蛋白激酶-1 似乎通过控制蔗糖合酶(SUS4)的表达参与蔗糖依赖途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验