The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Cell Death Differ. 2021 May;28(5):1705-1719. doi: 10.1038/s41418-020-00695-7. Epub 2020 Dec 7.
Foxo1 transcription factor is an evolutionarily conserved regulator of cell metabolism, oxidative stress, inflammation, and apoptosis. Activation of Hedgehog/Gli signaling is known to regulate cell growth, differentiation, and immune function. However, the molecular mechanisms by which interactive cell signaling networks restrain oxidative stress response and necroptosis are still poorly understood. Here, we report that myeloid-specific Foxo1 knockout (Foxo1) mice were resistant to oxidative stress-induced hepatocellular damage with reduced macrophage/neutrophil infiltration, and proinflammatory mediators in liver ischemia/reperfusion injury (IRI). Foxo1 enhanced β-catenin-mediated Gli1/Snail activity, and reduced receptor-interacting protein kinase 3 (RIPK3) and NIMA-related kinase 7 (NEK7)/NLRP3 expression in IR-stressed livers. Disruption of Gli1 in Foxo1 livers deteriorated liver function, diminished Snail, and augmented RIPK3 and NEK7/NLRP3. Mechanistically, macrophage Foxo1 and β-catenin colocalized in the nucleus, whereby the Foxo1 competed with T-cell factor (TCF) for interaction with β-catenin under inflammatory conditions. Disruption of the Foxo1-β-catenin axis by Foxo1 deletion enhanced β-catenin/TCF binding, activated Gli1/Snail signaling, leading to inhibited RIPK3 and NEK7/NLRP3. Furthermore, macrophage Gli1 or Snail knockout activated RIPK3 and increased hepatocyte necroptosis, while macrophage RIPK3 ablation diminished NEK7/NLRP3-driven inflammatory response. Our findings underscore a novel molecular mechanism of the myeloid Foxo1-β-catenin axis in regulating Hedgehog/Gli1 function that is key in oxidative stress-induced liver inflammation and necroptosis.
Foxo1 转录因子是细胞代谢、氧化应激、炎症和细胞凋亡的一种进化上保守的调节剂。已知 Hedgehog/Gli 信号通路的激活可调节细胞生长、分化和免疫功能。然而,细胞信号交互网络抑制氧化应激反应和坏死性凋亡的分子机制仍知之甚少。在这里,我们报告骨髓特异性 Foxo1 敲除(Foxo1)小鼠对氧化应激诱导的肝细胞损伤具有抗性,在肝缺血再灌注损伤(IRI)中,巨噬细胞/中性粒细胞浸润减少,促炎介质减少。Foxo1 增强了 β-连环蛋白介导的 Gli1/Snail 活性,并减少了 IR 应激肝脏中的受体相互作用蛋白激酶 3(RIPK3)和 NIMA 相关激酶 7(NEK7)/NLRP3 的表达。在 Foxo1 肝脏中破坏 Gli1 会恶化肝功能,减少 Snail,并增加 RIPK3 和 NEK7/NLRP3。在机制上,巨噬细胞 Foxo1 和 β-连环蛋白在核内共定位,Foxo1 在炎症条件下与 T 细胞因子(TCF)竞争与 β-连环蛋白相互作用。Foxo1 缺失破坏 Foxo1-β-连环蛋白轴会增强 β-连环蛋白/TCF 结合,激活 Gli1/Snail 信号通路,从而抑制 RIPK3 和 NEK7/NLRP3。此外,巨噬细胞 Gli1 或 Snail 敲除会激活 RIPK3 并增加肝细胞坏死性凋亡,而巨噬细胞 RIPK3 消融则会减少 NEK7/NLRP3 驱动的炎症反应。我们的研究结果强调了骨髓 Foxo1-β-连环蛋白轴在调节 Hedgehog/Gli1 功能方面的新分子机制,这对于氧化应激诱导的肝脏炎症和坏死性凋亡至关重要。