Babaei A, Ahmadi M, Jafari H, Liya A
Department of Applied Mathematics, University of Mazandaran, Babolsar, Iran.
Department of Mathematical Sciences, University of South Africa, UNISA0003, South Africa.
Chaos Solitons Fractals. 2021 Jan;142:110418. doi: 10.1016/j.chaos.2020.110418. Epub 2020 Nov 30.
In this study, we propose a mathematical model about the spread of novel coronavirus. This model is a system of fractional order differential equations in Caputo's sense. The aim is to explain the virus transmission and to investigate the impact of quarantine on decreasing the prevalence rate of the virus in the environment. The unique solvability of the presented COVID-19 model is proved. Also, the equilibrium points and the reproduction number of the proposed model are discussed in two cases with and without considering the quarantine factor. Using the Adams-Bashforth-Moulton predictor-corrector method, some numerical simulations are implemented to survey the behavior of the considered model.
在本研究中,我们提出了一个关于新型冠状病毒传播的数学模型。该模型是一个基于Caputo意义下的分数阶微分方程组。目的是解释病毒传播,并研究隔离对降低环境中病毒流行率的影响。证明了所提出的COVID - 19模型的唯一可解性。此外,在考虑和不考虑隔离因素的两种情况下,讨论了所提模型的平衡点和再生数。使用亚当斯 - 巴什福斯 - 莫尔顿预测 - 校正方法,进行了一些数值模拟以研究该模型的行为。