Suppr超能文献

基于近似贝叶斯计算的疾病传播微模拟动态校准

Dynamic calibration with approximate Bayesian computation for a microsimulation of disease spread.

机构信息

School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

School of Geography, University of Leeds, Leeds, LS2 9JT, UK.

出版信息

Sci Rep. 2023 May 27;13(1):8637. doi: 10.1038/s41598-023-35580-z.

Abstract

The global COVID-19 pandemic brought considerable public and policy attention to the field of infectious disease modelling. A major hurdle that modellers must overcome, particularly when models are used to develop policy, is quantifying the uncertainty in a model's predictions. By including the most recent available data in a model, the quality of its predictions can be improved and uncertainties reduced. This paper adapts an existing, large-scale, individual-based COVID-19 model to explore the benefits of updating the model in pseudo-real time. We use Approximate Bayesian Computation (ABC) to dynamically recalibrate the model's parameter values as new data emerge. ABC offers advantages over alternative calibration methods by providing information about the uncertainty associated with particular parameter values and the resulting COVID-19 predictions through posterior distributions. Analysing such distributions is crucial in fully understanding a model and its outputs. We find that forecasts of future disease infection rates are improved substantially by incorporating up-to-date observations and that the uncertainty in forecasts drops considerably in later simulation windows (as the model is provided with additional data). This is an important outcome because the uncertainty in model predictions is often overlooked when models are used in policy.

摘要

全球 COVID-19 大流行引起了公众和政策制定者对传染病建模领域的极大关注。建模者必须克服的一个主要障碍,特别是当模型被用于制定政策时,是量化模型预测的不确定性。通过在模型中纳入最新的可用数据,可以提高其预测质量并降低不确定性。本文通过使用近似贝叶斯计算(ABC)来动态地重新校准模型的参数值,从而探索在伪实时更新模型的好处。ABC 通过提供与特定参数值相关的不确定性信息以及通过后验分布提供 COVID-19 预测结果,提供了优于替代校准方法的优势。分析这些分布对于全面了解模型及其输出至关重要。我们发现,通过纳入最新的观测结果,未来疾病感染率的预测得到了显著改善,并且在后续模拟窗口中(随着模型提供更多数据),预测的不确定性大大降低。这是一个重要的结果,因为在政策中使用模型时,往往会忽略模型预测的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6542/10224937/9e4fd6131181/41598_2023_35580_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验