Babuji Adara, Silvestri Francesco, Pithan Linus, Richard Audrey, Geerts Yves H, Tessler Nir, Solomeshch Olga, Ocal Carmen, Barrena Esther
Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38000 Grenoble, France.
ACS Appl Mater Interfaces. 2020 Dec 23;12(51):57578-57586. doi: 10.1021/acsami.0c17273. Epub 2020 Dec 8.
Two derivatives of [1]benzothieno[3,2-b][1]benzothiophene (BTBT), namely, 2,7-dioctyl-BTBT (C8-BTBT) and 2,7-diphenyl-BTBT (DPh-BTBT), belonging to one of the best performing organic semiconductor (OSC) families, have been employed to investigate the influence of the substitutional side groups on the properties of the interface created when they are in contact with dopant molecules. As a molecular p-dopant, the fluorinated fullerene CF is used because of its adequate electronic levels and its bulky molecular structure. Despite the dissimilarity introduced by the OSC film termination, dopant thin films grown on top adopt the same (111)-oriented FCC crystalline structure in the two cases. However, the early stage distribution of the dopant on each OSC film surface is dramatically influenced by the group side, leading to distinct host-dopant interfacial morphologies that strongly affect the nanoscale local work function. In this context, Kelvin probe force microscopy and photoelectron emission spectroscopy provide a comprehensive picture of the interfacial electronic properties. The extent of charge transfer and energy level alignment between OSCs and dopant are debated in light of the differences in the ionization potential of the OSC in the films, the interface nanomorphology, and the electronic coupling with the substrate.
[1]苯并噻吩并[3,2-b][1]苯并噻吩(BTBT)的两种衍生物,即2,7-二辛基-BTBT(C8-BTBT)和2,7-二苯基-BTBT(DPh-BTBT),属于性能最佳的有机半导体(OSC)家族之一,已被用于研究取代侧基对其与掺杂剂分子接触时形成的界面性质的影响。作为分子p型掺杂剂,使用氟化富勒烯CF是因为其具有合适的电子能级和庞大的分子结构。尽管OSC薄膜终端引入了差异,但在两种情况下,生长在顶部的掺杂剂薄膜都采用相同的(111)取向的面心立方晶体结构。然而,掺杂剂在每个OSC薄膜表面的早期分布受到基团侧的显著影响,导致不同的主体-掺杂剂界面形态,强烈影响纳米级局部功函数。在这种情况下,开尔文探针力显微镜和光电子发射光谱提供了界面电子性质的全面图景。鉴于薄膜中OSC的电离势、界面纳米形态以及与衬底的电子耦合的差异,对OSC和掺杂剂之间的电荷转移程度和能级排列进行了讨论。