Suppr超能文献

基于深度语义分割特征的放射组学在医学图像分析中的分类任务。

Deep Semantic Segmentation Feature-Based Radiomics for the Classification Tasks in Medical Image Analysis.

出版信息

IEEE J Biomed Health Inform. 2021 Jul;25(7):2655-2664. doi: 10.1109/JBHI.2020.3043236. Epub 2021 Jul 27.

Abstract

Recently, an emerging trend in medical image classification is to combine radiomics framework with deep learning classification network in an integrated system. Although this combination is efficient in some tasks, the deep learning-based classification network is often difficult to capture an effective representation of lesion regions, and prone to face the challenge of overfitting, leading to unreliable features and inaccurate results, especially when the sizes of the lesions are small or the training dataset is small. In addition, these combinations mostly lack an effective feature selection mechanism, which makes it difficult to obtain the optimal feature selection. In this paper, we introduce a novel and effective deep semantic segmentation feature-based radiomics (DSFR) framework to overcome the above-mentioned challenges, which consists of two modules: the deep semantic feature extraction module and the feature selection module. Specifically, the extraction module is utilized to extract hierarchical semantic features of the lesions from a trained segmentation network. The feature selection module aims to select the most representative features by using a novel feature similarity adaptation algorithm. Experiments are extensively conducted to evaluate our method in two clinical tasks: the pathological grading prediction in pancreatic neuroendocrine neoplasms (pNENs), and the prediction of thrombolytic therapy efficacy in deep venous thrombosis (DVT). Experimental results on both tasks demonstrate that the proposed method consistently outperforms the state-of-the-art approaches by a large margin.

摘要

最近,医学图像分类领域的一个新兴趋势是将放射组学框架与深度学习分类网络结合在一个集成系统中。虽然这种组合在某些任务中很有效,但基于深度学习的分类网络往往难以捕捉病变区域的有效表示,并且容易面临过拟合的挑战,导致特征不可靠和结果不准确,尤其是当病变的大小较小或训练数据集较小时。此外,这些组合大多缺乏有效的特征选择机制,难以获得最佳的特征选择。在本文中,我们引入了一种新颖有效的基于深度语义分割特征的放射组学(DSFR)框架来克服上述挑战,该框架由两个模块组成:深度语义特征提取模块和特征选择模块。具体来说,提取模块用于从训练有素的分割网络中提取病变的分层语义特征。特征选择模块旨在通过使用新颖的特征相似性自适应算法选择最具代表性的特征。我们在两个临床任务中进行了广泛的实验来评估我们的方法:胰腺神经内分泌肿瘤(pNENs)的病理分级预测,以及深静脉血栓形成(DVT)的溶栓治疗效果预测。在这两个任务上的实验结果表明,所提出的方法始终显著优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验