文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GLAPAL-H:用于低场MRI中脑积水感染诊断的全局、局部和部分感知学习器

GLAPAL-H: Global, Local, And Parts Aware Learner for Hydrocephalus Infection Diagnosis in Low-Field MRI.

作者信息

Mukherjee Srijit, Templeton Kelsey, Tindimwebwa Starlin, Lin Ivy, Sutin Jason, Yu Mingzhao, Peterson Mallory, Truwit Chip, Schiff Steven J, Monga Vishal

机构信息

Pennsylvania State University, University Park, PA, USA.

Department of Neurosurgery, Yale University, New Haven, CT, USA.

出版信息

medRxiv. 2025 Jun 6:2025.05.14.25327461. doi: 10.1101/2025.05.14.25327461.


DOI:10.1101/2025.05.14.25327461
PMID:40463531
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12132119/
Abstract

OBJECTIVE: The study aims to develop a method for differentiating between healthy, post-infectious hydrocephalus (PIH), and non-post-infectious hydrocephalus (NPIH) in infants using low-field MRI, which is a safer, low-cost alternative to CT scans. The study develops a custom approach that captures hydrocephalic etiology while simultaneously addressing quality issues encountered in low-field MRI. METHODS: Specifically, we propose GLAPAL-H, a Global, Local, And Parts Aware Learner, which develops a multi-task architecture with global, local, and parts segmentation branches. The architecture segments images into brain tissue and CSF while using a shallow CNN for local feature extraction and develops a parallel deep CNN branch for global feature extraction. Three regularized training loss functions are developed - one for each of global, local, and parts components. The global regularizer captures holistic features, the local focuses on fine details, and the parts regularizer learns soft segmentation masks that enable local features to capture hydrocephalic etiology. RESULTS: The study's results show that GLAPAL-H outperforms state-of-the-art alternatives, including CT-based approaches, for both Two-Class (PIH vs. NPIH) and Three-Class (PIH vs. NPIH vs. Healthy) classification tasks in accuracy, interpretability, and generalizability. CONCLUSION/SIGNIFICANCE: GLAPAL-H highlights the potential of low-field MRI as a safer, low-cost alternative to CT imaging for pediatric hydrocephalus infection diagnosis and management. Practically, GLAPAL-H demonstrates robustness against quantity and quality of training imagery, enhancing its deployability. The code for this work is available here: https://github.com/mukherjeesrijit/glapalh.

摘要

目的:本研究旨在开发一种利用低场磁共振成像(MRI)区分婴儿健康、感染后脑积水(PIH)和非感染后脑积水(NPIH)的方法,低场MRI是一种比CT扫描更安全、成本更低的替代方法。该研究开发了一种定制方法,可捕捉脑积水病因,同时解决低场MRI中遇到的质量问题。 方法:具体而言,我们提出了GLAPAL-H,即全局、局部和部分感知学习器,它开发了一种具有全局、局部和部分分割分支的多任务架构。该架构将图像分割为脑组织和脑脊液,同时使用浅层卷积神经网络(CNN)进行局部特征提取,并开发一个并行的深度CNN分支进行全局特征提取。开发了三个正则化训练损失函数——分别用于全局、局部和部分组件。全局正则化器捕捉整体特征,局部正则化器关注精细细节,部分正则化器学习软分割掩码,使局部特征能够捕捉脑积水病因。 结果:研究结果表明,在两类(PIH与NPIH)和三类(PIH与NPIH与健康)分类任务的准确性、可解释性和泛化性方面,GLAPAL-H优于包括基于CT的方法在内的现有最佳替代方法。 结论/意义:GLAPAL-H突出了低场MRI作为一种更安全、低成本的替代CT成像用于小儿脑积水感染诊断和管理的潜力。实际上,GLAPAL-H展示了对训练图像数量和质量的鲁棒性,增强了其可部署性。这项工作的代码可在此处获取:https://github.com/mukherjeesrijit/glapalh 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/15ad1b011234/nihpp-2025.05.14.25327461v2-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/23344dd9a62a/nihpp-2025.05.14.25327461v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/1dfa5b5bd05d/nihpp-2025.05.14.25327461v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/1b27d44181dc/nihpp-2025.05.14.25327461v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/5e6cef675bc7/nihpp-2025.05.14.25327461v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/9e5b64673e2f/nihpp-2025.05.14.25327461v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/89feeba64468/nihpp-2025.05.14.25327461v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/041c830499c4/nihpp-2025.05.14.25327461v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/15ad1b011234/nihpp-2025.05.14.25327461v2-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/23344dd9a62a/nihpp-2025.05.14.25327461v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/1dfa5b5bd05d/nihpp-2025.05.14.25327461v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/1b27d44181dc/nihpp-2025.05.14.25327461v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/5e6cef675bc7/nihpp-2025.05.14.25327461v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/9e5b64673e2f/nihpp-2025.05.14.25327461v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/89feeba64468/nihpp-2025.05.14.25327461v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/041c830499c4/nihpp-2025.05.14.25327461v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1021/12147536/15ad1b011234/nihpp-2025.05.14.25327461v2-f0008.jpg

相似文献

[1]
GLAPAL-H: Global, Local, And Parts Aware Learner for Hydrocephalus Infection Diagnosis in Low-Field MRI.

medRxiv. 2025-6-6

[2]
GLAPAL-H: Global, Local, And Parts Aware Learner for Hydrocephalus Infection Diagnosis in Low-Field MRI.

IEEE Trans Biomed Eng. 2025-6-9

[3]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[4]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
MRI software and cognitive fusion biopsies in people with suspected prostate cancer: a systematic review, network meta-analysis and cost-effectiveness analysis.

Health Technol Assess. 2024-10

[7]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[8]
Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.

Cochrane Database Syst Rev. 2017-12-28

[9]
Immunogenicity and seroefficacy of pneumococcal conjugate vaccines: a systematic review and network meta-analysis.

Health Technol Assess. 2024-7

[10]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

本文引用的文献

[1]
Paediatric hydrocephalus.

Nat Rev Dis Primers. 2024-5-16

[2]
Joint [Formula: see text] and Image Reconstruction in Low-Field MRI by Physics-Informed Deep-Learning.

IEEE Trans Biomed Eng. 2024-10

[3]
SRTRP-Net: A multi-task learning network for segmentation and prediction of stereotactic radiosurgery treatment response in brain metastases.

Comput Biol Med. 2024-6

[4]
Brain imaging with portable low-field MRI.

Nat Rev Bioeng. 2023-9

[5]
Improving Tumor Classification by Reusing Self-predicted Segmentation of Medical Images as Guiding Knowledge.

IEEE J Biomed Health Inform. 2023-7-6

[6]
Infection diagnosis in hydrocephalus CT images: a domain enriched attention learning approach.

J Neural Eng. 2023-6-16

[7]
Brain Tumor Classification Using Deep Neural Network and Transfer Learning.

Brain Topogr. 2023-5

[8]
Self-Supervised Learning for Annotation Efficient Biomedical Image Segmentation.

IEEE Trans Biomed Eng. 2023-9

[9]
OCTAve: 2D En Face Optical Coherence Tomography Angiography Vessel Segmentation in Weakly-Supervised Learning With Locality Augmentation.

IEEE Trans Biomed Eng. 2023-6

[10]
Pushing the limits of low-cost ultra-low-field MRI by dual-acquisition deep learning 3D superresolution.

Magn Reson Med. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索