Mukherjee Srijit, Templeton Kelsey, Tindimwebwa Starlin, Lin Ivy, Sutin Jason, Yu Mingzhao, Peterson Mallory, Truwit Chip, Schiff Steven J, Monga Vishal
Pennsylvania State University, University Park, PA, USA.
Department of Neurosurgery, Yale University, New Haven, CT, USA.
medRxiv. 2025 Jun 6:2025.05.14.25327461. doi: 10.1101/2025.05.14.25327461.
OBJECTIVE: The study aims to develop a method for differentiating between healthy, post-infectious hydrocephalus (PIH), and non-post-infectious hydrocephalus (NPIH) in infants using low-field MRI, which is a safer, low-cost alternative to CT scans. The study develops a custom approach that captures hydrocephalic etiology while simultaneously addressing quality issues encountered in low-field MRI. METHODS: Specifically, we propose GLAPAL-H, a Global, Local, And Parts Aware Learner, which develops a multi-task architecture with global, local, and parts segmentation branches. The architecture segments images into brain tissue and CSF while using a shallow CNN for local feature extraction and develops a parallel deep CNN branch for global feature extraction. Three regularized training loss functions are developed - one for each of global, local, and parts components. The global regularizer captures holistic features, the local focuses on fine details, and the parts regularizer learns soft segmentation masks that enable local features to capture hydrocephalic etiology. RESULTS: The study's results show that GLAPAL-H outperforms state-of-the-art alternatives, including CT-based approaches, for both Two-Class (PIH vs. NPIH) and Three-Class (PIH vs. NPIH vs. Healthy) classification tasks in accuracy, interpretability, and generalizability. CONCLUSION/SIGNIFICANCE: GLAPAL-H highlights the potential of low-field MRI as a safer, low-cost alternative to CT imaging for pediatric hydrocephalus infection diagnosis and management. Practically, GLAPAL-H demonstrates robustness against quantity and quality of training imagery, enhancing its deployability. The code for this work is available here: https://github.com/mukherjeesrijit/glapalh.
目的:本研究旨在开发一种利用低场磁共振成像(MRI)区分婴儿健康、感染后脑积水(PIH)和非感染后脑积水(NPIH)的方法,低场MRI是一种比CT扫描更安全、成本更低的替代方法。该研究开发了一种定制方法,可捕捉脑积水病因,同时解决低场MRI中遇到的质量问题。 方法:具体而言,我们提出了GLAPAL-H,即全局、局部和部分感知学习器,它开发了一种具有全局、局部和部分分割分支的多任务架构。该架构将图像分割为脑组织和脑脊液,同时使用浅层卷积神经网络(CNN)进行局部特征提取,并开发一个并行的深度CNN分支进行全局特征提取。开发了三个正则化训练损失函数——分别用于全局、局部和部分组件。全局正则化器捕捉整体特征,局部正则化器关注精细细节,部分正则化器学习软分割掩码,使局部特征能够捕捉脑积水病因。 结果:研究结果表明,在两类(PIH与NPIH)和三类(PIH与NPIH与健康)分类任务的准确性、可解释性和泛化性方面,GLAPAL-H优于包括基于CT的方法在内的现有最佳替代方法。 结论/意义:GLAPAL-H突出了低场MRI作为一种更安全、低成本的替代CT成像用于小儿脑积水感染诊断和管理的潜力。实际上,GLAPAL-H展示了对训练图像数量和质量的鲁棒性,增强了其可部署性。这项工作的代码可在此处获取:https://github.com/mukherjeesrijit/glapalh 。
IEEE Trans Biomed Eng. 2025-6-9
Cochrane Database Syst Rev. 2018-1-22
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2017-12-28
Health Technol Assess. 2024-7
Nat Rev Dis Primers. 2024-5-16
IEEE Trans Biomed Eng. 2024-10
Nat Rev Bioeng. 2023-9
IEEE J Biomed Health Inform. 2023-7-6
Brain Topogr. 2023-5
IEEE Trans Biomed Eng. 2023-9