Suppr超能文献

基于症状严重程度的精神分裂症诊断及亚型识别的脑电图源网络——一种机器学习方法

EEG Source Network for the Diagnosis of Schizophrenia and the Identification of Subtypes Based on Symptom Severity-A Machine Learning Approach.

作者信息

Kim Jeong-Youn, Lee Hyun Seo, Lee Seung-Hwan

机构信息

Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.

Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 10380, Korea.

出版信息

J Clin Med. 2020 Dec 4;9(12):3934. doi: 10.3390/jcm9123934.

Abstract

A precise diagnosis and a comprehensive assessment of symptom severity are important clinical issues in patients with schizophrenia (SZ). We investigated whether electroencephalography (EEG) features obtained from EEG source network analyses could be effectively applied to classify the SZ subtypes based on symptom severity. Sixty-four electrode EEG signals were recorded from 119 patients with SZ (53 males and 66 females) and 119 normal controls (NC, 51 males and 68 females) during resting-state with closed eyes. Brain network features (global and local clustering coefficient and global path length) were calculated from EEG source activities. According to positive, negative, and cognitive/disorganization symptoms, the SZ patients were divided into two groups (high and low) by positive and negative syndrome scale (PANSS). To select features for classification, we used the sequential forward selection (SFS) method. The classification accuracy was evaluated using 10 by 10-fold cross-validation with the linear discriminant analysis (LDA) classifier. The best classification accuracy was 80.66% for estimating SZ patients from the NC group. The best classification accuracy between low and high groups in positive, negative, and cognitive/disorganization symptoms were 88.10%, 75.25%, and 77.78%, respectively. The selected features well-represented the pathological brain regions of SZ. Our study suggested that resting-state EEG network features could successfully classify between SZ patients and the NC, and between low and high SZ groups in positive, negative, and cognitive/disorganization symptoms.

摘要

精确诊断和对症状严重程度的全面评估是精神分裂症(SZ)患者重要的临床问题。我们研究了从脑电图(EEG)源网络分析中获得的EEG特征是否能有效地应用于基于症状严重程度对SZ亚型进行分类。在闭眼静息状态下,记录了119例SZ患者(53例男性和66例女性)和119例正常对照(NC,51例男性和68例女性)的64电极EEG信号。根据EEG源活动计算脑网络特征(全局和局部聚类系数以及全局路径长度)。根据阳性、阴性和认知/紊乱症状,通过阳性和阴性症状量表(PANSS)将SZ患者分为两组(高和低)。为了选择用于分类的特征,我们使用了顺序向前选择(SFS)方法。使用线性判别分析(LDA)分类器通过10×10倍交叉验证评估分类准确率。从NC组中估计SZ患者的最佳分类准确率为80.66%。阳性、阴性和认知/紊乱症状的低分组和高分组之间的最佳分类准确率分别为88.10%、75.25%和77.78%。所选特征很好地代表了SZ的病理性脑区。我们的研究表明,静息状态EEG网络特征可以成功地区分SZ患者与NC,以及阳性、阴性和认知/紊乱症状的低SZ组和高SZ组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5884/7761931/e0c975425c4c/jcm-09-03934-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验