Kim Sangha, Yang Chaeyeon, Dong Suh-Yeon, Lee Seung-Hwan
Department of Information Technology Engineering, Sookmyung Women's University, Seoul, Republic of Korea.
Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea.
Psychiatry Investig. 2025 Aug;22(8):914-920. doi: 10.30773/pi.2025.0133. Epub 2025 Aug 5.
This study aimed to improve the prediction of treatment response in patients with posttraumatic stress disorder (PTSD) by applying a variational autoencoder (VAE)-based data augmentation (DA) approach to electroencephalogram (EEG) data.
EEG spectrograms were collected from patients diagnosed with PTSD. A VAE model was pretrained on the original spectrograms and used to generate augmented data samples. These augmented spectrograms were then utilized to train a deep neural network (DNN) classifier. The performance of the model was evaluated by comparing the area under the receiver operating characteristic curve (AUC) between models trained with and without DA.
The DNN trained with VAE-augmented EEG data achieved an AUC of 0.85 in predicting treatment response, which was 0.11 higher than the model trained without augmentation. This reflects a significant improvement in classification performance and model generalization.
VAE-based DA effectively addresses the challenge of limited EEG data in clinical settings and enhances the performance of DNN models for treatment response prediction in PTSD. This approach presents a promising direction for future EEG-based neuropsychiatric research involving small datasets.
本研究旨在通过对脑电图(EEG)数据应用基于变分自编码器(VAE)的数据增强(DA)方法,改善创伤后应激障碍(PTSD)患者治疗反应的预测。
从被诊断为PTSD的患者中收集EEG频谱图。在原始频谱图上对VAE模型进行预训练,并用于生成增强数据样本。然后利用这些增强频谱图训练深度神经网络(DNN)分类器。通过比较使用和不使用DA训练的模型之间的受试者操作特征曲线(AUC)下的面积来评估模型的性能。
使用VAE增强的EEG数据训练的DNN在预测治疗反应方面的AUC为0.85,比未增强训练的模型高0.11。这反映了分类性能和模型泛化能力的显著提高。
基于VAE的DA有效解决了临床环境中EEG数据有限的挑战,并提高了DNN模型对PTSD治疗反应预测的性能。这种方法为未来涉及小数据集的基于EEG的神经精神研究提供了一个有前景的方向。