Suppr超能文献

已有血凝素茎部抗体与流感感染移植患者下呼吸道症状的保护相关。

Pre-existing Hemagglutinin Stalk Antibodies Correlate with Protection of Lower Respiratory Symptoms in Flu-Infected Transplant Patients.

机构信息

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Cell Rep Med. 2020 Nov 3;1(8):100130. doi: 10.1016/j.xcrm.2020.100130. eCollection 2020 Nov 17.

Abstract

Hemagglutination-inhibitory antibodies are usually highly strain specific with little effect on infection with drifted or shifted strains. The significance of broadly cross-reactive non-HAI anti-influenza antibodies against conserved domains of virus glycoproteins, such as the hemagglutinin (HA) stalk, is of great interest. We characterize a cohort of 40 H1N1pmd09 influenza-infected patients and identify lower respiratory symptoms (LRSs) as a predictor for development of pneumonia. A binomial logistic regression of log10 pre-existing antibody values shows that the probability of LRS occurrence decreased with increased anti-HA full-length and stalk antibody ELISA titers. However, a multilevel logistic regression model adjusted by other potential serocorrelates demonstrates that only antibodies directed against the stalk of HA correlate with protection from lower respiratory infection, limiting disease progression. Our predictive model indicates that a threshold of protective immunity based on broadly cross-reactive HA stalk antibodies could be feasible.

摘要

血凝抑制抗体通常具有高度的菌株特异性,对漂移或转变的菌株感染几乎没有影响。具有广泛交叉反应性的针对病毒糖蛋白保守结构域(如血凝素 (HA) 茎部)的非血凝抑制性抗流感抗体的意义非常重大。我们对 40 名感染 H1N1pmd09 流感的患者进行了特征描述,并确定下呼吸道症状 (LRS) 是肺炎发生的预测因子。对 log10 预先存在抗体值的二项逻辑回归表明,LRS 发生的概率随着抗全长 HA 和茎部抗体 ELISA 滴度的增加而降低。然而,通过其他潜在的血清学相关因素进行调整的多层次逻辑回归模型表明,只有针对 HA 茎部的抗体与下呼吸道感染的保护作用相关,从而限制了疾病的进展。我们的预测模型表明,基于广泛交叉反应性 HA 茎部抗体的保护性免疫阈值可能是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65cc/7691380/aafdb30b2bc0/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验