Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA.
Present address: School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
Microb Genom. 2020 Dec;6(12). doi: 10.1099/mgen.0.000487. Epub 2020 Dec 9.
are alpha-proteobacteria symbionts infecting a large range of arthropod species and two different families of nematodes. Interestingly, these endosymbionts are able to induce diverse phenotypes in their hosts: they are reproductive parasites within many arthropods, nutritional mutualists within some insects and obligate mutualists within their filarial nematode hosts. Defining 'species' is controversial and so they are commonly classified into 17 different phylogenetic lineages, termed supergroups, named A-F, H-Q and S. However, available genomic data remain limited and not representative of the full diversity; indeed, of the 24 complete genomes and 55 draft genomes of available to date, 84 % belong to supergroups A and B, exclusively composed of from arthropods. For the current study, we took advantage of a recently developed DNA-enrichment method to produce four complete genomes and two draft genomes of from filarial nematodes. Two complete genomes, Ctub and Dcau, are the smallest genomes sequenced to date (863 988 bp and 863 427 bp, respectively), as well as the first genomes representing supergroup J. These genomes confirm the validity of this supergroup, a controversial clade due to weaknesses of the multilocus sequence typing approach. We also produced the first draft genome from a supergroup F filarial nematode representative (Mhie), two genomes from supergroup D (Lsig and Lbra) and the complete genome of Dimm from supergroup C. Our new data confirm the paradigm of smaller genomes from filarial nematodes containing low levels of transposable elements and the absence of intact bacteriophage sequences, unlike many from arthropods, where both are more abundant. However, we observe differences among the genomes from filarial nematodes: no global co-evolutionary pattern, strong synteny between supergroup C and supergroup J and more transposable elements observed in supergroup D compared to the other supergroups. Metabolic pathway analysis indicates several highly conserved pathways (haem and nucleotide biosynthesis, for example) as opposed to more variable pathways, such as vitamin B biosynthesis, which might be specific to certain host-symbiont associations. Overall, there appears to be no single -filarial nematode pattern of co-evolution or symbiotic relationship.
α-变形菌是一类感染多种节肢动物物种和两种不同线虫科的共生菌。有趣的是,这些内共生菌能够在宿主中诱导多种表型:它们在许多节肢动物中是生殖寄生虫,在某些昆虫中是营养共生体,在它们的丝状线虫宿主中是必需共生体。“物种”的定义存在争议,因此它们通常被分为 17 个不同的系统发育谱系,称为超组,命名为 A-F、H-Q 和 S。然而,可用的基因组数据仍然有限,不能代表全部多样性;事实上,迄今为止可用的 24 个完整基因组和 55 个草图基因组中,84%属于仅由节肢动物衍生的超组 A 和 B。在当前的研究中,我们利用最近开发的 DNA 富集方法,从丝状线虫中获得了四个完整基因组和两个草图基因组。两个完整基因组,Ctub 和 Dcau,是迄今为止测序的最小的 基因组(分别为 863988bp 和 863427bp),也是代表超组 J 的第一个基因组。这些基因组证实了这个超组的有效性,该超组是一个由于多基因序列分型方法的弱点而存在争议的分支。我们还从超组 F 的丝状线虫代表(Mhie)中产生了第一个草图 基因组,从超组 D 中产生了两个基因组(Lsig 和 Lbra),以及从超组 C 中产生了 Dimm 的完整基因组。我们的新数据证实了这样一个范例,即来自丝状线虫的较小的 基因组包含低水平的转座元件,并且没有完整的噬菌体序列,这与许多来自节肢动物的 不同,后者两者都更为丰富。然而,我们观察到来自丝状线虫的 基因组之间存在差异:没有全局协同进化模式,超组 C 和超组 J 之间具有很强的同线性,而超组 D 中观察到更多的转座元件,与其他超组相比。代谢途径分析表明存在几个高度保守的途径(例如血红素和核苷酸生物合成),而不是更可变的途径,例如维生素 B 生物合成,这可能是特定于某些宿主-共生体关联的。总体而言,似乎没有单一的 - 丝状线虫协同进化或共生关系模式。